Data and Formulae Booklet for Advanced and Intermediate Physics

The following equations and formulae may be useful in answering some of the questions in the examination.

Mechanics kinematics: uniformly accelerated motion

Equations of motion:
$$v = u + at$$

$$v^2 = u^2 + 2as$$

$$s = \left(\frac{u+v}{2}\right)t$$

$$s = ut + \frac{1}{2}at^2$$

Mechanics dynamics

Newton's second law:
$$F = \frac{dp}{dt} = \frac{d(mv)}{dt}$$

Kinetic Energy: K.E. =
$$\frac{1}{2}mv^2$$

Potential Energy:
$$P.E. = mgh$$

Mechanical Work Done:
$$W = Fs$$

Power:
$$P = Fv$$

Momentum:
$$p = mv$$

Mechanics dynamics: circular and rotational motion

Angular displacement:
$$s = r\theta$$

$$v = r\omega$$

$$\omega = \frac{d\theta}{dt}$$

$$a = r\alpha$$

$$\alpha = \frac{d\omega}{dt}$$

$$a = \frac{v^2}{r}$$

$$F = \frac{mv^2}{r} = mr\omega^2$$

$$T = \frac{2\pi r}{v}$$

$$L = I\omega$$

$$\tau = I\alpha$$

Work done in rotation:

$$W = \tau \theta$$

Rotational Kinetic energy:

K.E. =
$$\frac{1}{2}I\omega^2$$

Simple harmonic motion

$$x = x_0 \sin(\omega t + \phi)$$

$$v = \omega x_0 \cos(\omega t + \phi)$$

$$v = \pm \omega \sqrt{x_0^2 - x^2}$$

Acceleration:

$$a = -\omega^2 x$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

Ray optics

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

$$_{1}n_{2} = \frac{\sin\left(\theta_{1}\right)}{\sin\left(\theta_{2}\right)} = \frac{v_{1}}{v_{2}}$$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

(Cartesian)

$$m = \frac{v}{u} = \frac{h_{i}}{h_{o}}$$
 (real is positive)

$$m = -\frac{v}{u} = -\frac{h_{i}}{h_{o}}$$
 (Cartesian)

Current electricity

$$V = IR$$

$$I = nAvq$$

Resistors in series:
$$R_{\text{Total}} = R_1 + R_2 + \dots$$

Resistors in parallel:
$$\frac{1}{R_{\text{Total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

Potential divider rule:
$$\frac{V_1}{V_{\text{Total}}} = \frac{R_1}{R_{\text{Total}}}$$

Power:
$$P = IV = I^2 R = \frac{V^2}{R}$$

Resistivity:
$$\rho = \frac{RA}{I}$$

Temperature coefficient:
$$\alpha = \frac{R_{\theta} - R_0}{R_0 \theta}$$

Alternating current

For sinusoidal alternating
$$V = V_0 \sin(\omega t + \phi)$$
 supply voltage: $V_0 = BAN\omega$

Root mean square for sinusoidal alternating current
$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$
 $V_{\rm rms} = \frac{V_0}{\sqrt{2}}$ and voltage:

Reactance:
$$X_L = 2\pi fL$$
 $X_C = \frac{1}{2\pi fC}$

Stationary waves on strings

Frequency of waves on strings:
$$f_n = \frac{n}{2L} \sqrt{\frac{T}{\mu}} = nf_1$$

Speed of waves on strings:
$$v = \sqrt{\frac{T}{\mu}}$$

Wave motion

Velocity of a wave:
$$v = f\lambda$$

Two slit interference:
$$y = \frac{\lambda D}{d}$$

Diffraction grating:
$$d\sin(\theta) = n\lambda$$
 $d = \frac{1}{N}$

Single slit diffraction:
$$\sin(\theta) \approx \theta = \frac{\lambda}{a}$$

Diffraction of circular aperture:
$$\sin(\theta) \approx \theta = 1.22 \frac{\lambda}{a}$$

Fields

Electric field strength:
$$E = \frac{F}{q} = -\frac{dV}{dr}$$

Uniform electric field:
$$E = \frac{V}{d}$$

Force between point charges:
$$F = \frac{Qq}{4\pi\varepsilon r^2}$$

Electric field strength due to a point charge:
$$E = \frac{Q}{4\pi\varepsilon r^2}$$

Relative permittivity:
$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$$

Electric potential due to a point charge:
$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

Work done when a point charge moves:
$$W = qV = \Delta \left(\frac{1}{2}mv^2\right)$$

Gravitational field strength:
$$g = \frac{F}{m} = -\frac{dV}{dr}$$

Force between two point masses:
$$F = \frac{GMm}{r^2}$$

Gravitational field strength due to a point mass:
$$g = \frac{GM}{r^2}$$

Gravitational potential due to a point mass:
$$V = -\frac{GM}{r}$$

Work done when a point mass
$$W = mV = \Delta \left(\frac{1}{2}mv^2\right)$$
 moves:

Capacitance

Charge on a capacitor:
$$Q = CV$$

Capacitance of parallel plates:
$$C = \frac{\varepsilon_0 \varepsilon_r A}{d} = \frac{\varepsilon A}{d}$$

Capacitors in parallel:
$$C_{\text{Total}} = C_1 + C_2 + \dots$$

Capacitors in series:
$$\frac{1}{C_{\text{Total}}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

Energy stored:
$$W = \frac{1}{2}CV^2$$

Charging:
$$Q = Q_0 \left(1 - e^{-t/RC} \right)$$

Discharging:
$$Q = Q_0 e^{-t/RC}$$

Inductance

Self-inductance:
$$E_1 = -L \frac{dI_1}{dt}$$

Mutual inductance:
$$E_2 = -M \frac{dI_1}{dt}$$

Energy stored:
$$W = \frac{1}{2}LI^2$$

Electromagnetism

Force on wire:
$$F = BIl \sin(\theta)$$

Torque on a rectangular coil:
$$\tau = BANI \cos(\theta)$$

Force on moving charge:
$$F = BQv\sin(\theta)$$

Magnetic flux:
$$\phi = BA$$

Field inside a solenoid:
$$B = \mu_0 \mu_r nI$$

Field near a long straight wire:
$$B = \frac{\mu_0 I}{2\pi r}$$

Induced e.m.f.:
$$E = -\frac{d(N\phi)}{dt}$$

E.m.f. induced in a moving straight conductor in a uniform
$$E = Blv$$

Hall voltage:
$$V_{\scriptscriptstyle H} = \frac{BI}{nqt}$$

Temperature

magnetic field:

Temperature two point scale:
$$\theta = \frac{X_{\theta} - X_{0}}{X_{100} - X_{0}} \times 100 \,^{\circ}\text{C}$$

Temperature absolute scale:
$$T = 273.16 \frac{P}{P_{tr}} \text{ K}$$

$$\theta(^{\circ}C) = T(K) - 273.15 \text{ K}$$

First and second laws of thermodynamics

$$\Delta U = \Delta Q + \Delta W$$

(Work done by system is

$$\Delta U = \Delta Q - \Delta W$$

(Work done by system is positive)

Efficiency of an ideal heat

$$\eta = 1 - \frac{T_c}{T_h}$$

Gases

$$PV = nRT = NkT$$

$$PV = \frac{1}{3} Nm \langle c^2 \rangle$$

$$k = \frac{R}{N_{\Delta}}$$

Principal molar heat capacities of an ideal gas:

$$\gamma = \frac{C_P}{C_V}$$

$$C_P - C_V = R$$

Adiabatic process:

$$PV^{\gamma} = \text{constant}$$

Materials

$$F = k\delta l$$

$$\sigma = \frac{F}{A}$$

$$\varepsilon = \frac{\delta l}{l}$$

$$Y = \frac{\sigma}{\varepsilon}$$

$$E = \frac{1}{2}k(\delta l)^2$$

Heat transfer

$$\frac{dQ}{dt} = -kA\frac{d\theta}{dx}$$

Quantum phenomena

Quantum energy:

$$E = hf$$

Mass-energy:

$$E = mc^2$$

Photoelectric effect:

$$hf = \phi + \left(\frac{1}{2}mv^2\right)_{\text{max}}$$

Energy levels:

$$\Delta E = E_2 - E_1 = hf = \frac{hc}{\lambda}$$

De Broglie wavelength:

$$\lambda = \frac{h}{mv}$$

Radioactivity

Decay rate:
$$\frac{dN}{dt} = -\lambda N$$

$$A = \lambda N$$

$$N = N_0 e^{-\lambda t}$$

Half-life:
$$T_{\frac{1}{2}} = \frac{\ln(2)}{\lambda} = \frac{0.693}{\lambda}$$

Absorption law for gamma radiation:
$$I = I_0 e^{-\mu d}$$

Doppler shift

Doppler shift:
$$f = f_0 \left(1 - \frac{v}{c} \right)$$

Mathematical Formulae

Surface area of a sphere:
$$S = 4\pi r^2$$

Volume of a sphere:
$$V = \frac{4}{3}\pi r^3$$

Surface area of a cylinder:
$$S = 2\pi rh + 2\pi r^2$$

Volume of a cylinder:
$$V = \pi r^2 h$$

Logarithms:
$$\log_a(bc) = \log_a(b) + \log_a(c)$$

$$\log_a \left(\frac{b}{c}\right) = \log_a (b) - \log_a (c)$$
$$\log_a (b^c) = c \log_a (b)$$
$$\log_a (a) = 1$$

Equation of a straight line:

$$y = mx + c$$

Relationship between cosine

and sine:

$$\sin(90^{\circ} \pm \theta) = \cos(\theta)$$

Relationship between tangent,

cosine and sine:

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

Small angles:

$$\sin(\theta) \approx \tan(\theta) \approx \theta$$
 (in radians)

Difference of two squares:

$$x^{2} - y^{2} = (x + y)(x - y)$$

Formula for the roots of a quadratic equation:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Physical Constants

Acceleration of free fall on and near the Earth's surface:

$$g = 9.81 \text{m s}^{-2}$$

Boltzmann constant:

$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

Molar gas constant:

$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$$

Avogadro's constant:

$$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$$

Coulomb's law constant:

$$k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

Charge of an electron: $e = -1.60 \times 10^{-19} \,\mathrm{C}$

Rest mass of an electron: $m_e = 9.11 \times 10^{-31} \text{ kg}$

Rest mass of a proton: $m_p = 1.673 \times 10^{-27} \text{ kg}$

Rest mass of a neutron: $m_{\rm n} = 1.675 \times 10^{-27} \text{ kg}$

Unified atomic mass unit: $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$

 $1 \text{ u} = 931.5 \text{ MeV}/c^2$

Electronvolt: $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

Permittivity of free space: $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$

Permeability of free space: $\mu_0 = 4\pi \times 10^{-7} \text{ H m}^{-1}$

Planck constant: $h = 6.63 \times 10^{-34} \text{ J s}$

Speed of light in a vacuum: $c = 3.00 \times 10^8 \text{ m s}^{-1}$

Range of wavelengths for visible light: $\lambda = 400 \text{ nm to } 700 \text{ nm}$

One year: 1 year = 365.25 days

One light year: $1 \text{ ly} = 9.46 \times 10^{15} \text{ m}$