MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

MATRICULATION CERTIFICATE EXAMINATION ADVANCED LEVEL MAY 2014

SUBJECT:	PURE MATHEMATICS
PAPER NUMBER:	Ι
DATE:	12th MAY 2014
TIME:	9.00 a.m. to 12.00 noon

Directions to Candidates

Answer ALL questions.

Each question carries 10 marks.

Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

- 1. (a) Find constants *A*, *B*, *C* and *D* such that
 - (i) $2\cos x + 3\sin x \equiv A(-\sin x + \cos x) + B(\cos x + \sin x);$
 - (ii) $1 \equiv C(x-1) + Dx$.
 - (b) Solve the differential equation

 $x(x-1)(2\cos y + 3\sin y)\frac{\mathrm{d}y}{\mathrm{d}x} = \cos y + \sin y,$

given that $y = \frac{\pi}{2}$ when x = 2.

[3, 7 marks]

2. (a) Find the two possible values of α given that the vectors $\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\mathbf{i} + \alpha \mathbf{j} + \mathbf{k}$ make an angle of 60°.

[4 marks]

(b) Find the point of intersection of the line ℓ₁ with equation **r**₁ = 4**i** + **j** + **k** + λ(**i** + **j** - **k**) and the line ℓ₂ with equation **r**₂ = -**i** - (3√6 + 1)**j** + μ(**i** + β**j** + **k**), where β is the *larger* value of α found in part (a).

[6 marks]

- 3. (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ if $y = \ln\sqrt{x^2+4}$.
 - (b) A curve has equation $xy^3 + 2x^2y = 3$. Find the equation of the normal to the curve at the point (1, 1).

[5 marks]

[4 marks]

4. (a) Solve the equation

$$2\log_7 x + 3 = 2\log_x 7.$$

 (b) The first question on an examination paper is: Write down the quadratic equation with roots ¹/_α and ¹/_β, where α and β are non-zero real numbers.

One candidate writes

$$x^2 - \frac{1}{\alpha + \beta}x + \frac{1}{\alpha\beta} = 0$$

as an answer. Show that there are no real values of α and β for which this will give the correct answer.

[6 marks]

- 5. (a) Let $z_1 = 3 + 4i$ and $z_2 = 1 + 2i$, where $i = \sqrt{-1}$. Represent the complex numbers $z_1 z_2$ and $\frac{z_1}{z_2}$ on an Argand diagram. Hence, find the area enclosed by the quadrilateral with vertices $z_1 z_2$, $\frac{\bar{z}_1}{\bar{z}_2}$, $\frac{z_1}{z_2}$ and $\bar{z}_1 \bar{z}_2$. [5 marks]
 - (b) Solve the equation

$$\frac{\sqrt{5}}{2}\sec\theta - \tan\theta = 2$$

for $0^{o} \leq \theta \leq 360^{o}$, giving your answer correct to *one* decimal place.

[5 marks]

6. (a) Use integration by parts to find

$$\int x^2 e^{-3x} \,\mathrm{d}x.$$

[5 marks]

(b) By using a suitable substitution show that

$$\int_{\pi/6}^{\pi/3} \frac{\sin\theta\cos\theta}{1+\sin\theta} \,\mathrm{d}\theta = \frac{1}{2}(\sqrt{3}-1) + \ln\left(\frac{3}{2+\sqrt{3}}\right).$$

[5 marks]

[5 marks]

7. (a) The function *f* is defined on the domain $x \le 0$ by

$$f: x \mapsto \frac{x^2 - 1}{x^2 + 1} \,.$$

- (i) State the range, ran(f), of f.
- (ii) Find an expression for $f^{-1}(x)$ for $x \in \operatorname{ran}(f)$.
- [2, 3 marks]
 (b) Functions g and h are given by g(x) = √x+2 and h(x) = ln(1-x²). Find the composite function (h ∘ g)(x) and describe its domain assuming that the domains of g and h are the largest possible.

[2, 3 marks]

8. The table below shows the distribution by colour (green, blue and red) and size (small and large) of a collection of 20 bottles. All the other features of the bottles are exactly the same.

	Green	Blue	Red
Small	4	5	6
Large	2	0	3

These bottles are placed in a random order next to each other on a shelf.

- (a) Considering the **small** bottles *only*, in how many different ways can these be placed on the shelf next to each other?
- (b) Find the number of all possible different arrangements of *all* the bottles if the 15 small bottles need to be placed next to each other.
- (c) What is the probability that on choosing at random one of the possible arrangements described in (b), a small green bottle is next to a large bottle of a different colour?

[2, 3, 5 marks]

- 9. (a) Find the equation of the circle C_1 with centre at (-2, -4) having the *x*-axis as one of its tangents.
 - (b) Show that the equation of the locus \mathscr{C}_2 of the point which is equidistant from the line ℓ_1 with equation y = x + 4 and the point with coordinates (-1, -1) is given by

$$x^2 + y^2 + 2xy - 4x + 12y - 12 = 0.$$

(c) Find the coordinates of the points of intersection of \mathcal{C}_1 and \mathcal{C}_2 , and deduce that they lie on the line ℓ_2 with equation x = -2.

[3, 3, 4 marks]

- 10. (a) Find the sum of the whole numbers that are divisible by 7 and lie between 100 and 200.
 - (b) Write the recurring decimal

0.158158158...

as a sum of a geometric progression. Hence write the recurring decimal as a rational number.

(c) Given that

$$(1-2x)^5(2+x)^6 \equiv a+bx+cx^2+dx^3+\dots$$

find the values of the constants *a*, *b*, *c* and *d*.

[4 marks]

[3 marks]

[3 marks]

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

MATRICULATION CERTIFICATE EXAMINATION ADVANCED LEVEL

SUBJECT:	PURE MATHEMATICS
PAPER NUMBER:	II
DATE:	13th MAY 2014
TIME:	9.00 a.m. to 12.00 noon

Directions to Candidates

Answer SEVEN questions. Each question carries 15 marks.

Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) Solve the differential equation

$$\frac{\mathrm{d}r}{\mathrm{d}\theta} + r\cot\theta = \cos\theta\,,$$

given that r = 1 when $\theta = \frac{\pi}{2}$.

(b) Solve the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 4y = 12\sin 2x \,,$$

given that $y = -3\pi$ and $\frac{dy}{dx} = 5$ when $x = \pi$. [When finding the particular integral, use $Px \cos 2x + Qx \sin 2x$ as a trial solution.]

[8 marks]

2. The points *A*, *B* and *C* have position vectors 4i+2j+3k, 9i+2j+2k and 6i-j+2k, respectively.
(a) Find the equation of the plane Π₁ that passes through *A*, *B* and *C*.

[3 marks]

(b) The point *D* has position vector $5\mathbf{i} - 3\mathbf{j} + 14\mathbf{k}$. Find the distance from *D* to the plane Π_1 , and the volume of the tetrahedron with vertices at *A*, *B*, *C* and *D*.

[4 marks]

(c) Find the equation of the line ℓ that passes through *D* and is perpendicular to Π_1 . Find the point of intersection of ℓ and Π_1 .

[4 marks]

(d) The plane Π_2 passes through *A*, *B* and *D*. Find the angle made by the planes Π_1 and Π_2 . [4 marks]

[7 marks]

3. (a) Show that the equation $e^{1/x} = x$ has a solution between 1 and 2. Use the Newton-Raphson method to find an approximate value of this solution, taking 2 as a first approximation. Do *two* iterations and give your working to *four* decimal places.

[7 marks]

- (b) (i) Express the length of the portion of the curve $y = \sin x$ between x = 0 and $x = \pi$ as an integral.
 - (ii) Estimate the integral by Simpson's Rule with an interval width of $h = \frac{\pi}{6}$. Give your answers to *four* decimal places.

[8 marks]

[3 marks]

[3 marks]

[3 marks]

- 4. Let the function f_1 be given by $f_1(x) \equiv \frac{x^2 + 5x + 6}{2x^2 11x + 5}$, and consider the curve having equation $y = f_1(x)$.
 - (a) Find the equations of all the linear asymptotes of the curve.
 - (b) Determine the coordinates of the stationary points on the curve (giving your answer correct to *four* decimal places).
 - (c) Sketch the curve $y = f_1(x)$, indicating clearly where the curve cuts the coordinate axes and the horizontal asymptote.
 - (d) State the range of values of $f_1(x)$.
 - (e) If the function f_2 is given by $f_2(x) \equiv -\frac{1}{2}|x-2|$, deduce graphically that the equation $f_1(x) = f_2(x)$ has no real roots.
 - [4 marks]

[4 marks]

[4 marks]

- 5. The curve \mathscr{C}_1 has polar equation $r = 1 + \frac{2}{5}\sin 5\theta$.
 - (a) Find the minimum and maximum values of *r* and the corresponding values of θ in the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
 - (b) Hence, or otherwise, sketch the curve \mathscr{C}_1 for $0 \le \theta \le 2\pi$.

The curve \mathscr{C}_2 has polar equation $r = \frac{3}{5}$, for values of θ between 0 and 2π . (c) Deduce the polar coordinates of all the points of intersection of \mathscr{C}_1 and \mathscr{C}_2 .

[3 marks]

(d) Find the area enclosed between the two curves.

[4 marks]

[2 marks]

6. Let
$$I_n = \int_0^{\ln 2} (e^x + e^{-x})^n dx$$
.
(a) Show that
 $\frac{d}{dx} \left[(e^x - e^{-x})(e^x + e^{-x})^{n-1} \right] = n(e^x + e^{-x})^n - 4(n-1)(e^x + e^{-x})^{n-2}$.
(b) Hence show that
 $3 (5)^{n-1}$

$$nI_n = 4(n-1)I_{n-2} + \frac{3}{2}\left(\frac{5}{2}\right)^{n-1}.$$

(c) The region bounded by the axes, the line $x = \ln 2$ and the curve $y = (e^x + e^{-x})^2$ is rotated by 2π radians about the *x*-axis to form a solid of revolution. Find the volume of this solid of revolution, giving your answer correct to *three* decimal places.

[6, 5, 4 marks]

7. (a) Show that $\csc 2\theta - \cot 2\theta \equiv \tan \theta$. Hence, or otherwise, show that $\tan \frac{5\pi}{12} = 2 + \sqrt{3}$.

[2, 2 marks]

- (b) Let $w = 1 + (2 + \sqrt{3})i$, where $i = \sqrt{-1}$.
 - (i) Find the modulus and argument of w^n , where *n* is a positive integer. (Give $|w^n|$ in surd form and arg w^n as a fraction of π .)

[4 marks]

(ii) Let P(x, y) be the point on an Argand diagram representing the complex number z = x + iy and satisfying

$$\operatorname{Re} z + \operatorname{Im} z = \frac{1}{4} \operatorname{Re} w^4.$$

Express the equation of the locus of P(x, y) in Cartesian form and sketch the locus. Hence, show that the least value of |z| on this locus is $7\sqrt{2} + 4\sqrt{6}$.

[4, 3 marks]

8. (a) Given that $e^y = e^x + e^{-x}$, show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - 1 = 0.$$

Find the values of *y*, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when x = 0. Hence determine the Maclauren series for *y* in ascending powers of *x* up to and including the term in x^4 .

[8 marks]

- (b) Prove by the principle of mathematical induction that for every integer $n \ge 1$,
 - (i) n(n+1) is divisible by 2;
 - (ii) n(n+1)(n+2) is divisible by 6.

[7 marks]

9. (a) Given that

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 5 & 1 & 7 \end{pmatrix},$$
find \mathbf{A}^{-1} . Hence, solve the equation $\mathbf{A}\mathbf{x} = \mathbf{y}$, when $\mathbf{y} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$.

[5, 2 marks]

- (b) Let $\mathbf{T} = \begin{pmatrix} 17 & 9\\ 9 & -7 \end{pmatrix}$ and P(a, ka) be a point on the line y = kx.
 - (i) If P'(x', y') is the image of P(a, ka) under the transformation **T**, find the coordinates of P' in terms of a and k.
 - (ii) **T** maps the line y = kx onto another straight line. Using your answer to part (i), find the equation of this straight line.
 - (iii) Find the Cartesian equation of the straight lines, passing through the origin, that **T** maps onto themselves.

[2, 2, 4 marks]

- 10. (a) Attila and Beatrice play a table-tennis match in which whoever wins two sets wins the match (note that no set can end in a draw). Initially, both players have the same probability of winning the first set, but the probability of winning a subsequent set depends on the result of the preceding set. The probability that Beatrice wins the subsequent set if she has won the preceding set is ³/₄, but her probability of winning the subsequent set decreases to ¹/₅ if she has lost the preceding one. By using a tree diagram, or otherwise, determine the probability that:
 - (i) the match ends after only two sets;
 - (ii) Attila wins the match.

[3, 4 marks]

(b) (i) Given two events *A* and *B* neither of which is impossible, show that

$$P(A) = \frac{P(A|B)}{P(B|A)} P(B).$$

(ii) In a group of girls, some own a smartphone, some own a tablet, some own both, and the rest own neither of the two. A person is chosen at random from the group. The probability that she owns a smartphone if it is known that she owns a tablet is of 52%, while the probability that she owns a tablet if it is known that she owns a smartphone is 26%. Given that 25% of the girls in the group own a tablet, find the percentage of the group who own neither a smartphone nor a tablet.

[2, 6 marks]