MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD
 UNIVERSITY OF MALTA, MSIDA
 MATRICULATION CERTIFICATE EXAMINATION
 ADVANCED LEVEL
 SEPTEMBER 2014

SUBJECT:	PURE MATHEMATICS
PAPER NUMBER:	I
DATE:	$2^{\text {nd }}$ SEPTEMBER 2014
TIME:	9.00 a.m. to 12.00 noon

Directions to Candidates
Answer ALL questions.
Each question carries 10 marks.
Graphical calculators are not allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) If $y=e^{3 x} \sin 4 x$ show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+25 y=0 .
$$

[4 marks]
(b) A curve has equation $y=\frac{\ln x}{2 x-3}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the equation of the tangent to the curve when $x=2$, giving your answer in the form $y=m x+c$.
2. (a) Find the following indefinite integrals:
(i) $\int \frac{x+1}{(x-2)(x-3)} \mathrm{d} x$
(ii) $\int(1+x) e^{-x} \mathrm{~d} x$
(b) Evaluate

$$
\int_{0}^{\pi / 4} \sin ^{4} x \mathrm{~d} x
$$

3. The matrix \mathbf{P} is given by

$$
\mathbf{P}=\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right),
$$

where a, b and c are constants such that $b c \neq 0$. Given that $\mathbf{P}^{2}=\left(\mathbf{P}^{2}\right)^{\mathrm{T}}$ (where \mathbf{A}^{T} represents the transpose of a matrix \mathbf{A}), show that:
(a) $a=-c$; and
(b) $|\mathbf{P}| \neq 0$.

It is given further that the matrix \mathbf{P} represents a transformation mapping the line $y=2 x$ onto the line $y=x$.
(c) Evaluate the constants a, b and c.
(d) Find the image of the unit square under the transformation represented by \mathbf{P}.
4. (a) Solve the following pair of simultaneous equations.

$$
\begin{aligned}
\log _{2}(x+y) & =2, \\
2 \log _{3} x & =\log _{3}(10-3 y) .
\end{aligned}
$$

(b) The non-zero numbers a, k and b are three consecutive terms of an arithmetic series. Show that if the numbers $a, 3$ and b are the first three consecutive terms of a geometric progression then

$$
a^{2}-2 k a+9=0 .
$$

Deduce that $|k| \geq 3$.
Given that $k=5$, find the values of a and b for which the geometric series converges and find the sum to infinity in this case.
5. (a) The function f is defined for $-1 \leq x \leq 0$ by

$$
f(x)=\frac{1}{1+x^{2}} .
$$

Write down the range of f and find an expression for $f^{-1}(x)$ for x in the range of f.
(b) Let $f(x)=3 x+k$ and $g(x)=\frac{x-4}{3}$. For what value of k is $f(g(x))=g(f(x))$?
[5 marks]
6. Solve the differential equation

$$
y\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=(1+x) e^{y^{2}}
$$

given that $y=0$ when $x=0$.
[10 marks]
7. Consider the 5×6 checkerboard shown in the figure below.

Suppose that a coin is placed on the square labelled \mathbf{S} and it has to be moved to the square labelled \mathbf{F} such that, in each step of the path, the coin has to be moved to an adjacent box having a different colour.
(a) How many different paths from \mathbf{S} to \mathbf{F} are there such that the number of steps needed does not exceed 9 ?
[4 marks]
(b) Suppose that a path of 9 steps from \mathbf{S} to \mathbf{F} is randomly chosen. What is the probability that the coin has been on the square labelled \mathbf{A} ?
[6 marks]
8. Find the modulus and argument of z_{1} and z_{2} given that

$$
z_{1}=\frac{\sqrt{3}-\sqrt{3} i}{1+\sqrt{3} i} \quad \text { and } \quad z_{2}=\cos \vartheta-\frac{1}{2(\cos \vartheta+i \sin \vartheta)}
$$

Show on an Argand diagram the complex numbers z_{1} and z_{2} given that $\vartheta=\pi / 4$.
[3, 5, 2 marks]
9. Let A, B and C be points in the plane with coordinates $(7,1),(3,-2)$ and $(4,5)$ respectively.
(a) Find the angle $\angle A B C$.
[4 marks]
(b) Find a and b if $\mathbf{v}=a \mathbf{i}+b \mathbf{j}$ is a unit vector in the direction of the line that bisects the angle $\angle A B C$. Give your answer to 4 decimal places.
10. (a) If $x+3$ is a factor of $f(x)=2 x^{3}+k x^{2}-4 x-3$, find the value of k. Hence, express $f(x)$ as a product of three linear factors and resolve $\frac{1}{f(x)}$ into partial fractions.
(b) Expand $\ln \frac{1+x}{1-x}$ as a series of ascending powers of x up to and including the term of x^{5}. Hence, or otherwise, show that

$$
\ln 2 \approx \frac{2}{3}\left[1+\frac{1}{3}\left(\frac{1}{9}\right)+\frac{1}{5}\left(\frac{1}{9}\right)^{2}+\cdots\right] .
$$

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD
 UNIVERSITY OF MALTA, MSIDA

MATRICULATION CERTIFICATE EXAMINATION
ADVANCED LEVEL
SEPTEMBER 2014

SUBJECT:	PURE MATHEMATICS
PAPER NUMBER:	II
DATE:	$3^{\text {rd }}$ SEPTEMBER 2014
TIME:	9.00 a.m. to 12.00 noon

Directions to Candidates

Answer SEVEN questions. Each question carries 15 marks.
Graphical calculators are not allowed however scientific calculators can be used but all necessary working must be shown.

1. Consider the following system of equations.

$$
\begin{aligned}
x+2 y-3 z & =a, \\
k x-y+2 z & =b, \\
3 x-8 y+13 z & =c .
\end{aligned}
$$

(a) By reducing to echelon form, show that when $k=3$ the equations cannot have a unique solution and are consistent only if $2 b=3 a+c$.
(b) Show that when $k=1$ the three equations have a unique solution. Determine x, y and z in terms of a, b and c.
2. The planes Π_{1} and Π_{2} have equations $x-y+2 z=3$ and $2 x+3 y-z=1$ respectively.
(a) Find a and b given that the point A with coordinates $(a, b, 0)$ lies on both Π_{1} and Π_{2}. Find the vector equation of the line ℓ_{1} where the planes Π_{1} and Π_{2} intersect.
(b) Show that ℓ_{1} is parallel to the plane Π_{3} with equation $4 x+y+3 z=-6$.

Let ℓ_{2} be the line perpendicular to Π_{3} passing through A. Find the point B where ℓ_{2} intersects Π_{3}.
(c) Explain why the following system of equations does not have a solution:

$$
\begin{aligned}
x-y+2 z & =3 \\
2 x+3 y-z & =1 \\
4 x+y+3 z & =-6 .
\end{aligned}
$$

[Do NOT attempt to solve this system of equations.]
[6, 6, 3 marks]
3. Let the function f be given by

$$
f(x) \equiv \frac{3 x^{2}+4 x-4}{1-x}
$$

and consider the curve having equation $y_{1}=f(x)$.
(a) Find the equations of all the linear asymptotes of the curve. Determine the coordinates of the stationary points on the curve and find their nature.
(b) Sketch the curve $y_{1}=f(x)$, indicating clearly where the curve cuts the coordinate axes. State the range of values of $f(x)$.
[3, 3, 3, 2 marks]
Given that $y_{2}=f(x+k)$ and $y_{3}=f(x)+c$, find:
(c) the value of the constant k such that y_{2} is not defined at $x=0$;
(d) the range of values of the constant c such that y_{3} does not take the value zero.
[2, 2 marks]
4. (a) Show that the equation $2 \sinh x=\frac{5}{x}$ has a solution between 1 and 2. Use the NewtonRaphson method to find an approximate value of this solution, taking 1 as a first approximation. Do two iterations and give your working to four decimal places.
[5 marks]
(b) (i) Use the series expansion of e^{x} to find the series expansion of $\cosh x$ up to and including the term in x^{4}. Estimate $\int_{0}^{1} \cosh x \mathrm{~d} x$ by integrating this series expansion.
(ii) Estimate $\int_{0}^{1} \cosh x \mathrm{~d} x$ by Simpson's Rule with an interval width of $h=0.25$. Give your answer to four decimal places.
(iii) Evaluate $\int_{0}^{1} \cosh x \mathrm{~d} x$ directly and compare your answer to those obtained in parts (i) and (ii).
[4, 3, 3 marks]
5. (a) Box 1 contains 6 blue discs and 4 red discs, while box 2 contains 3 blue discs, 3 red discs and 3 green discs. A disc is chosen at random from box 1 and placed in box 2 , and then a disc is randomly selected from box 2 . What is the probability that:
(i) the disc selected from box 2 is green?
(ii) the disc selected from box 2 is red?
(iii) the disc selected from box 1 was blue given that a blue disc was selected from box 2 ?
(b) Given two events A and B neither of which is impossible, show that if $P[A \mid B]>P[A]$ then $P[B \mid A]>P[B]$.
6. (a) Express the function

$$
f(x) \equiv \frac{6-11 x+10 x^{2}}{(1+x)(1-2 x)^{2}}
$$

in partial fractions. Hence, expand $f(x)$ as a series in ascending powers of x up to and including the term in x^{3}.
(b) Use the method of mathematical induction to prove that

$$
\text { if } A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \text {, then } A^{n}=\left(\begin{array}{ccc}
1 & n & \frac{n(n-1)}{2} \\
0 & 1 & n \\
0 & 0 & 1
\end{array}\right)
$$

for every positive integer n.
7. (a) (i) Find the least value of $|z|$ if $|z-1|=|z+2+i|$.
(ii) Find the greatest value of $\arg z$ if $3|z-1|=1$.
(b) Using Euler's identity $e^{i \vartheta} \equiv \cos \vartheta+i \sin \vartheta$, prove that if $z=\cos \vartheta+i \sin \vartheta$ then

$$
\begin{aligned}
& z^{n}+z^{-n}=2 \cos n \vartheta, \\
& z^{n}-z^{-n}=2 i \sin n \vartheta,
\end{aligned}
$$

for any integer n. Show that

$$
\cos ^{4} \vartheta+\sin ^{4} \vartheta \equiv \frac{1}{4}(\cos 4 \vartheta+3)
$$

and hence find the general solution of the following equation.

$$
2 \cos ^{4} \vartheta-3 \cos ^{2} 2 \vartheta+2 \sin ^{4} \vartheta+3 \sin ^{2} 2 \vartheta=0 .
$$

[4, 3 marks]
8. The curve C_{1} has polar equation $r=\frac{\pi}{2} \sin \theta$, for $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
(a) Sketch the curve C_{1}.
(b) Hence, or otherwise, sketch the curve C_{2} having polar equation $r=(\pi-|\theta|) \sin \theta$, for $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
(c) Find the area enclosed by the curve C_{2}.
9. (a) (i) Given that $I_{n}=\int_{0}^{\frac{1}{2} \pi} t^{n} \sin t \mathrm{~d} t$, show that for $n \geq 2$,

$$
I_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}
$$

[4 marks]

(ii) A curve C in the $x y$-plane is defined parametrically in terms of t. It is given that

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=t^{4}(1-\cos 2 t) \quad \text { and } \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=t^{4} \sin 2 t
$$

Find the length of the arc of C from the point where $t=0$ to the point where $t=\frac{1}{2} \pi$.
[6 marks]
(b) The area of an enclosed region is defined by $y \geq x^{2}+2$ and $y \leq 5 x+2$. The region is rotated by 2π radians about the x-axis to form a solid of revolution. Show that the volume of this solid of revolution is 500π.
[5 marks]
10. (a) (i) Show that, for $-1<x<1$,

$$
\int \frac{2}{1-x^{2}} \mathrm{~d} x=\ln \left(\frac{1+x}{1-x}\right)+C
$$

where C is an arbitrary constant.
(ii) Solve the differential equation

$$
\left(1-x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\frac{(1-x)\left(1-x^{2}\right)}{2+2 x+x^{2}}
$$

for $-1<x<1$, given that $y=\ln 2$ when $x=0$.
(b) Solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+25 y=39 e^{2 x}
$$

given that $y=3$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ when $x=0$.

