MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

MATRICULATION CERTIFICATE EXAMINATION ADVANCED LEVEL SEPTEMBER 2014

SUBJECT:	PURE MATHEMATICS
PAPER NUMBER:	Ι
DATE:	2 nd SEPTEMBER 2014
TIME:	9.00 a.m. to 12.00 noon

Directions to Candidates

Answer ALL questions.

Each question carries 10 marks.

Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) If $y = e^{3x} \sin 4x$ show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 6\frac{\mathrm{d}y}{\mathrm{d}x} + 25y = 0.$$

[4 marks]

- (b) A curve has equation $y = \frac{\ln x}{2x 3}$.

(b) Evaluate

(i) Find $\frac{dy}{dx}$. (ii) Find the equation of the tangent to the curve when x = 2, giving your answer in the form y = mx + c.

[3, 3 marks]

2. (a) Find the following indefinite integrals:

(i)
$$\int \frac{x+1}{(x-2)(x-3)} dx$$
 (ii) $\int (1+x)e^{-x} dx$

[3, 3 marks]

 $\int_{0}^{x/4} \sin^4 x \, \mathrm{d}x \, \mathrm{d}x$

[4 marks]

3. The matrix **P** is given by

$$\mathbf{P} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix},$$

where *a*, *b* and *c* are constants such that $bc \neq 0$. Given that $\mathbf{P}^2 = (\mathbf{P}^2)^T$ (where \mathbf{A}^T represents the transpose of a matrix **A**), show that:

- (a) a = -c; and
- (b) $|\mathbf{P}| \neq 0$.

It is given further that the matrix **P** represents a transformation mapping the line y = 2x onto the line y = x.

- (c) Evaluate the constants *a*, *b* and *c*.
- (d) Find the image of the unit square under the transformation represented by **P**.

[2, 2, 3, 3 marks]

4. (a) Solve the following pair of simultaneous equations.

$$log_2(x+y) = 2,$$

 $2log_3 x = log_3(10-3y)$

[3 marks]

(b) The non-zero numbers *a*, *k* and *b* are three consecutive terms of an arithmetic series. Show that if the numbers *a*, 3 and *b* are the first three consecutive terms of a geometric progression then

$$a^2 - 2ka + 9 = 0.$$

Deduce that $|k| \ge 3$.

Given that k = 5, find the values of *a* and *b* for which the geometric series converges and find the sum to infinity in this case.

[3, 1, 3 marks]

5. (a) The function *f* is defined for $-1 \le x \le 0$ by

$$f(x) = \frac{1}{1+x^2}.$$

Write down the range of *f* and find an expression for $f^{-1}(x)$ for *x* in the range of *f*.

(b) Let
$$f(x) = 3x + k$$
 and $g(x) = \frac{x-4}{3}$. For what value of k is $f(g(x)) = g(f(x))$?
[5 marks]

6. Solve the differential equation

$$y(1+x^2)\frac{dy}{dx} = (1+x)e^{y^2}$$
,

given that y = 0 when x = 0.

[10 marks]

7. Consider the 5×6 checkerboard shown in the figure below.

Suppose that a coin is placed on the square labelled **S** and it has to be moved to the square labelled **F** such that, in each step of the path, the coin has to be moved to an adjacent box having a different colour.

(a) How many different paths from **S** to **F** are there such that the number of steps needed does not exceed 9?

[4 marks]

(b) Suppose that a path of 9 steps from **S** to **F** is randomly chosen. What is the probability that the coin has been on the square labelled **A**?

[6 marks]

8. Find the modulus and argument of z_1 and z_2 given that

$$z_1 = \frac{\sqrt{3} - \sqrt{3}i}{1 + \sqrt{3}i}$$
 and $z_2 = \cos \vartheta - \frac{1}{2(\cos \vartheta + i\sin \vartheta)}$.

Show on an Argand diagram the complex numbers z_1 and z_2 given that $\vartheta = \pi/4$.

[3, 5, 2 marks]

9. Let *A*, *B* and *C* be points in the plane with coordinates (7, 1), (3, -2) and (4, 5) respectively. (a) Find the angle $\angle ABC$.

[4 marks]

(b) Find *a* and *b* if $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ is a unit vector in the direction of the line that bisects the angle $\angle ABC$. Give your answer to 4 decimal places.

[6 marks]

10. (a) If x + 3 is a factor of $f(x) = 2x^3 + kx^2 - 4x - 3$, find the value of k. Hence, express f(x) as a product of three linear factors and resolve $\frac{1}{f(x)}$ into partial fractions.

[5 marks]

(b) Expand $\ln \frac{1+x}{1-x}$ as a series of ascending powers of x up to and including the term of x^5 . Hence, or otherwise, show that

$$\ln 2 \approx \frac{2}{3} \left[1 + \frac{1}{3} \left(\frac{1}{9} \right) + \frac{1}{5} \left(\frac{1}{9} \right)^2 + \cdots \right].$$

[5 marks]

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

MATRICULATION CERTIFICATE EXAMINATION ADVANCED LEVEL SEPTEMBER 2014

SUBJECT:	PURE MATHEMATICS
PAPER NUMBER:	II
DATE:	3 rd SEPTEMBER 2014
TIME:	9.00 a.m. to 12.00 noon

Directions to Candidates

Answer **SEVEN** questions. Each question carries 15 marks.

Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. Consider the following system of equations.

- (a) By reducing to echelon form, show that when k = 3 the equations cannot have a unique solution and are consistent only if 2b = 3a + c.
- (b) Show that when *k* = 1 the three equations have a unique solution. Determine *x*, *y* and *z* in terms of *a*, *b* and *c*.

[9 marks]

[6 marks]

- 2. The planes Π_1 and Π_2 have equations x y + 2z = 3 and 2x + 3y z = 1 respectively.
 - (a) Find *a* and *b* given that the point *A* with coordinates (a, b, 0) lies on both Π_1 and Π_2 . Find the vector equation of the line ℓ_1 where the planes Π_1 and Π_2 intersect.
 - (b) Show that ℓ₁ is parallel to the plane Π₃ with equation 4x + y + 3z = −6. Let ℓ₂ be the line perpendicular to Π₃ passing through *A*. Find the point *B* where ℓ₂ intersects Π₃.
 - (c) Explain why the following system of equations does not have a solution:

$$x - y + 2z = 3$$

$$2x + 3y - z = 1$$

$$4x + y + 3z = -6.$$

[Do NOT attempt to solve this system of equations.]

[6, 6, 3 marks]

3. Let the function *f* be given by

$$f(x) \equiv \frac{3x^2 + 4x - 4}{1 - x},$$

and consider the curve having equation $y_1 = f(x)$.

- (a) Find the equations of all the linear asymptotes of the curve. Determine the coordinates of the stationary points on the curve and find their nature.
- (b) Sketch the curve $y_1 = f(x)$, indicating clearly where the curve cuts the coordinate axes. State the range of values of f(x).

[3, 3, 3, 2 marks]

Given that $y_2 = f(x+k)$ and $y_3 = f(x) + c$, find:

- (c) the value of the constant k such that y_2 is not defined at x = 0;
- (d) the range of values of the constant c such that y_3 does not take the value zero.

[2, 2 marks]

4. (a) Show that the equation $2\sinh x = \frac{5}{x}$ has a solution between 1 and 2. Use the Newton-Raphson method to find an approximate value of this solution, taking 1 as a first approximation. Do *two* iterations and give your working to *four* decimal places.

[5 marks]

- (i) Use the series expansion of e^x to find the series expansion of $\cosh x$ up to and in-(b) cluding the term in x^4 . Estimate $\int_0^1 \cosh x \, dx$ by integrating this series expansion. (ii) Estimate $\int_0^1 \cosh x \, dx$ by Simpson's Rule with an interval width of h = 0.25. Give

 - your answer to *four* decimal places. (iii) Evaluate $\int_{0}^{1} \cosh x \, dx$ directly and compare your answer to those obtained in parts (i) and (ii)

[4, 3, 3 marks]

- 5. (a) Box 1 contains 6 blue discs and 4 red discs, while box 2 contains 3 blue discs, 3 red discs and 3 green discs. A disc is chosen at random from box 1 and placed in box 2, and then a disc is randomly selected from box 2. What is the probability that:
 - (i) the disc selected from box 2 is green?
 - (ii) the disc selected from box 2 is red?
 - (iii) the disc selected from box 1 was blue given that a blue disc was selected from box 2? [2, 4, 5 marks]
 - (b) Given two events A and B neither of which is impossible, show that if P[A|B] > P[A] then P[B|A] > P[B].

[4 marks]

6. (a) Express the function

$$f(x) \equiv \frac{6 - 11x + 10x^2}{(1 + x)(1 - 2x)^2}$$

in partial fractions. Hence, expand f(x) as a series in ascending powers of x up to and including the term in x^3 .

(b) Use the method of mathematical induction to prove that

if
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, then $A^n = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$

for every positive integer *n*.

- 7. (a) (i) Find the least value of |z| if |z-1| = |z+2+i|. (ii) Find the greatest value of $\arg z$ if 3|z-1| = 1.
 - (b) Using Euler's identity $e^{i\vartheta} \equiv \cos\vartheta + i\sin\vartheta$, prove that if $z = \cos\vartheta + i\sin\vartheta$ then

$$z^{n} + z^{-n} = 2\cos n\vartheta,$$

$$z^{n} - z^{-n} = 2i\sin n\vartheta,$$

for any integer n. Show that

$$\cos^4 \vartheta + \sin^4 \vartheta \equiv \frac{1}{4} (\cos 4\vartheta + 3)$$

and hence find the general solution of the following equation.

 $2\cos^4\vartheta - 3\cos^22\vartheta + 2\sin^4\vartheta + 3\sin^22\vartheta = 0.$

[4, 3 marks]

- 8. The curve C_1 has polar equation $r = \frac{\pi}{2} \sin \theta$, for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. (a) Sketch the curve C_1 .
 - (b) Hence, or otherwise, sketch the curve C_2 having polar equation $r = (\pi |\theta|)\sin\theta$, for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.
 - (c) Find the area enclosed by the curve C_2 .

[7 marks]

[6 marks]

[9 marks]

[5, 3 marks]

[5 marks]

[3 marks]

9. (a) (i) Given that
$$I_n = \int_0^{\frac{1}{2}\pi} t^n \sin t \, dt$$
, show that for $n \ge 2$,
 $I_n = n \left(\frac{\pi}{2}\right)^{n-1} - n(n-1)I_{n-2}$.

(ii) A curve *C* in the *xy*-plane is defined parametrically in terms of *t*. It is given that

$$\frac{\mathrm{d}x}{\mathrm{d}t} = t^4(1 - \cos 2t)$$
 and $\frac{\mathrm{d}y}{\mathrm{d}t} = t^4 \sin 2t$.

Find the length of the arc of *C* from the point where t = 0 to the point where $t = \frac{1}{2}\pi$. [6 marks]

(b) The area of an enclosed region is defined by $y \ge x^2+2$ and $y \le 5x+2$. The region is rotated by 2π radians about the *x*-axis to form a solid of revolution. Show that the volume of this solid of revolution is 500π .

[5 marks]

10. (a) (i) Show that, for -1 < x < 1,

$$\int \frac{2}{1-x^2} \, \mathrm{d}x = \ln\left(\frac{1+x}{1-x}\right) + C,$$

where *C* is an arbitrary constant.

(ii) Solve the differential equation

$$(1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = \frac{(1-x)(1-x^2)}{2+2x+x^2},$$

for -1 < x < 1, given that $y = \ln 2$ when x = 0.

[2, 6 marks]

(b) Solve the differential equation

$$\frac{d^2 y}{dx^2} - 8\frac{dy}{dx} + 25y = 39e^{2x},$$

given that $y = 3$ and $\frac{dy}{dx} = 3$ when $x = 0.$ [7 marks]