MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

MATRICULATION CERTIFICATE EXAMINATION ADVANCED LEVEL SEPTEMBER 2017

SUBJECT:	PURE MATHEMATICS
PAPER NUMBER:	Ι
DATE:	4 th SEPTEMBER 2017
TIME:	09:00 to 12:05

Directions to Candidates

Answer ALL questions.

Each question carries 10 marks.

Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) Let $y = x^3 \sin(\ln x)$. Show that

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 5x \frac{\mathrm{d}y}{\mathrm{d}x} + 10y = 0.$$

(b) A curve has equation y³ - 3x y² + 2x²y = 3. Find the equation of the tangent to the curve at the point (2, 1).

[5 marks]

2. Solve the differential equation

$$\csc^3 x \frac{\mathrm{d}y}{\mathrm{d}x} = \cos^2 y$$
,

given that $y = \frac{\pi}{4}$ when x = 0.

[10 marks]

3. (a) Evaluate the integral

$$\int_0^1 e^{5x} \left(\frac{e^{2x}}{7} + \frac{3}{e^{3x}} \right) \mathrm{d}x \, .$$

(b) (i) Show that for $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$,

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(\sec x + \tan x) = \sec x \,.$$

(ii) Hence, or otherwise, find

$$\int \cos x \ln(\cos x) dx, \quad \text{with} -\frac{1}{2}\pi < x < \frac{1}{2}\pi.$$

4. The function *f* is given by $f(x) = -\frac{1}{8}(x^4 - 6x^3 + 4x^2 + 24x - 32)$. (a) Show that the curve y = f(x) intersects the *x*-axis at x = -2 and at x = 4.

[2 marks]

[4 marks]

- (b) Find the coordinates of the stationary points of the curve y = f(x).
- (c) Hence sketch the curves of the following equations on the same set of axes:
 (i) y = f(x);
 (ii) y = f(x+1).

[4 marks]

5. (a) Express $\cos \theta - \sqrt{3} \sin \theta$ in the form $R \cos(\theta + \alpha)$, where *R* is a positive number and α is an angle measured in radians between 0 and $\frac{\pi}{2}$. Hence, sketch the graph of $y = \cos \theta - \sqrt{3} \sin \theta$, given that $0 \le \theta \le 2\pi$, showing clearly the intercepts of the graph with the lines y = 0, $y = \pm 1$ and $y = \pm 2$.

[7 marks]

(b) Find the sum of the infinite geometric series

$$1 + \frac{\sec\theta}{1 - \sqrt{3}\tan\theta} + \frac{\sec^2\theta}{(1 - \sqrt{3}\tan\theta)^2} + \frac{\sec^3\theta}{(1 - \sqrt{3}\tan\theta)^3} + \cdots$$

giving your answer in terms of θ . For what values of θ in the interval $[0, 2\pi]$ is your answer valid?

[3 marks]

[4 marks]

- 6. The function g(x) = 2x 1 is defined for all real x and the function $h(x) = \frac{1}{x+3}$ is defined for all real $x \neq -3$.
 - (a) Find $g^{-1}(x)$ and show that $g^{-1}(g(x)) = x$.
 - (b) Find an expression for g(h(x)) and find the domain of the composite function $g \circ h$.
 - (c) Sketch a complete and accurate graph of $g \circ h$. Clearly label the *x* and *y*-intercepts, and any asymptotes in your sketch.
 - (d) State the range of $g \circ h$.

7. Let **C** be the matrix
$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 6 & 6 \\ 0 & 9 & 3 \end{pmatrix}$$
.

- (a) Show that $C^3 = 13C^2 144I$, where I is the identity matrix.
- [5 marks] (b) Given that C^{-1} exists, without finding C^{-1} , show that this equation can be written as $C^{-1} = \frac{1}{144}C(13I - C).$

(c) Hence deduce \mathbf{C}^{-1} .

- 8. (a) If $\log_r p = q$ and $\log_q r = p$, prove that $\log_q p = pq$.
 - (b) Consider the complex number

$$z = \frac{\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)^2 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^3}{\left(\cos\frac{\pi}{24} - i\sin\frac{\pi}{24}\right)^4}.$$

- (i) Find the modulus and the argument of z.
- (ii) Simplify $(1+2z)(2+z^2)$ expressing your answer in the form a + bi, leaving a and b in surd form. Show that $(1+2z)(2+z^2)+3\overline{z}=0$.

[2, 5 marks]

Page 3 of 4

[2 marks]

[3 marks]

[4 marks]

[1 marks]

[2 marks]

[3 marks]

[3 marks]

9. The lines ℓ_1 , ℓ_2 and ℓ_3 have vector equations

$$\mathbf{r} = \mathbf{i} + \mathbf{j} + \lambda(3\mathbf{i} - \mathbf{k}),$$

$$\mathbf{r} = 3\mathbf{i} - 11\mathbf{j} - 4\mathbf{k} + \mu(\mathbf{i} + \mathbf{j} + 3\mathbf{k}),$$

and
$$\mathbf{r} = 6\mathbf{i} - 19\mathbf{j} + 5\mathbf{k} + \nu(\mathbf{i} - 10\mathbf{j} + 3\mathbf{k}),$$

respectively.

- (a) Show that ℓ_3 is perpendicular to both ℓ_1 and ℓ_2 .
- (b) Show that ℓ_3 intersects both ℓ_1 and ℓ_2 , and find the points of intersection.
- (c) Find the distance between the two points of intersection found in (b). [4 marks]

[2 marks]

[4 marks]

- 10. Let $p(x) = x^3 + ax^2 + bx + 6$, where *a* and *b* are constant real numbers.
 - (a) Show that if the equation p(x) = 0 has three real distinct roots, then $a^2 > 3b$.

[4 marks]

(b) It is given that (x-2) is a factor of p(x), and that when divided by x-1, the polynomial p(x) leaves a remainder 4. Find the values of a and b, and factorise p(x) completely.

[6 marks]

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD UNIVERSITY OF MALTA, MSIDA

MATRICULATION CERTIFICATE EXAMINATION ADVANCED LEVEL SEPTEMBER 2017

SUBJECT:	PURE MATHEMATICS
PAPER NUMBER:	II
DATE:	5 th SEPTEMBER 2017
TIME:	09:00 to 12:05

Directions to Candidates

Answer **SEVEN** questions. Each question carries 15 marks.

Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. Let
$$\mathbf{A} = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ \sin \theta & \cos \theta & 0 \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$
, where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

(a) (i) Show that $|\mathbf{A}| = \cos^3 \theta + \sin^3 \theta$ and find the value of θ for which **A** is singular. (ii) Solve for **x** the equation $\mathbf{A}\mathbf{x} = \mathbf{0}$ for this value of θ .

[4, 4 marks]

(b) Solve for **x** the equation
$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, when $\theta = \frac{\pi}{3}$.

[7 marks]

2. (a) Sketch the graphs of $y = -x(x+3)^2$ and of $y^2 = -x(x+3)^2$ on the same set of axes.

[5 marks]

(b) The function f is given by

$$f(x) = \frac{(2x+3)(x-1)}{(2x-1)(x+1)}.$$

- (i) Find the range of values of f.
- (ii) Find the equation of the horizontal asymptote of the curve y = f(x).
- (iii) Deduce the only stationary value of y = f(x), giving reasons for your answer. [5, 2, 3 marks]

- 3. The planes Π_1 and Π_2 have equations 2x + y 3z = 1 and 4x y + z = 3, respectively.
 - (a) Find the angle between the planes Π_1 and Π_2 , and the vector equation of the line ℓ_1 where the planes intersect.

[7 marks]

(b) Find the equation of the plane Π_3 that contains the line ℓ_1 and the point *A* with position vector $2\mathbf{i} - 11\mathbf{j} - 6\mathbf{k}$.

[4 marks]

(c) Find the vector equation of the line ℓ_2 that lies in the plane Π_3 , is perpendicular to ℓ_1 and passes through *A*.

[4 marks]

- 4. [Note: Angles should be taken in radians throughout this question.]
 - (a) Show that the equation $x \sin x = 3 \cot x$ has a solution between 1 and 2. Use the Newton-Raphson method to find an approximate value of this solution, taking 1 as a first approximation. Do **two** iterations and give your working to **four** decimal places.

[7 marks]

- (b) (i) Express the length of the portion of the curve $y = \cos x$ between x = 0 and $x = \pi$ as an integral.
 - (ii) Use Simpson's Rule to estimate this integral. Use an interval width of $h = \frac{\pi}{6}$ and give your answer to **four** decimal places.

[3, 5 marks]

5. (a) Write down Euler's identity. Use the trigonometric factor formulae to show that

$$e^{i\theta} + e^{i\phi} = 2\cos\frac{\theta-\phi}{2}e^{\frac{\theta+\phi}{2}i},$$

where $i = \sqrt{-1}$.

Hence, show that the solutions of the equation

$$\left(\frac{z+1}{z-1}\right)^5 = 1$$

have the form $z = -i \cot \frac{k\pi}{5}$, where $k \in \{1, 2, 3, 4\}$.

[9 marks]

(b) P(x, y) is the point on an Argand diagram representing z = x + iy, where x and y are real numbers. Given that |z+2| = 3|z-2-4i|, find the maximum value of |z|.

[6 marks]

- 6. The curve C₁ has polar equation r = ¹/₅(4 + sin5θ), where 0 ≤ θ ≤ 2π.
 (a) Sketch the curve C₁. [3 marks] The circle C₂ has Cartesian equation x² + y² = 1.
 (b) Find the polar equation of C₂ and sketch it on the same diagram used in (a). [2 marks]
 - (c) Find the polar coordinates of the points of intersection of the two curves \mathscr{C}_1 and \mathscr{C}_2 . [4 marks]
 - (d) Find the area enclosed between the two curves.

[6 marks]

- 7. In a survey about the use of mobile phones by passengers during any particular bus journey, it was found that of those passengers using their mobile phone, 60% use it to access the Internet, 45% to make/receive a call, and 35% to send an SMS. There are 5% who use their mobile phone for all the three purposes during one journey.
 - (a) What percentage of the passengers who use their mobile phone do so for only one of the above mentioned purposes?

[5 marks]

The survey also concluded that 22% of the passengers on a bus do **not** use their mobile phones.

(b) If a bus is chosen at random, what is the probability that a randomly chosen passenger uses his/her mobile phone for only one of the above mentioned purposes?

[2 marks]

Three buses are chosen at random and a passenger is randomly chosen from each bus. (c) What is the probability that the three chosen passengers do not use their mobile phones?

- [3 marks]
- (d) What is the probability that exactly two of the chosen passengers use their mobile phone for only one of the three different purposes mentioned above?

[5 marks]

- 8. (a) (i) By direct application of the Maclauren expansion formula, find the Maclauren expansion, as far as the term in x^4 , of $f(x) = \ln(1+x)$.
 - (ii) Hence, or otherwise, find the first **four** non-zero terms of the Maclauren expansion of

$$g(x) = \frac{\ln(1+2x)}{\sqrt{1+x}}.$$

[3, 5 marks]

(b) A sequence $a_1, a_2, a_3, ...$ is such that $a_1 = 0$, $a_2 = -6$ and $a_n = 5a_{n-1} - 6a_{n-2}$ for all $n \ge 3$. Use the method of mathematical induction to prove that

$$a_n = 3 \times 2^n - 2 \times 3^n$$

for every positive integer *n*.

[7 marks]

9. (a) Find the general solution of the differential equation

.2

$$3x\frac{\mathrm{d}y}{\mathrm{d}x} - y = 1 + \ln x, \quad \text{for } x > 0,$$

giving *y* explicitly in terms of *x*. Find also the particular solution for which y = -2 when x = 1.

(b) Solve the differential equation

$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 3y = 10\sin x,$$

given that $y = 0$ and $\frac{dy}{dx} = 3$ when $x = 0.$ [7 marks]

10. (a) (i) Let
$$I_n = \int_0^{\pi/2} \sin^n x \, dx$$
. Show that, for $n \ge 2$,

$$I_n = \frac{n-1}{n} I_{n-2}.$$

(ii) The region bounded by the curve $y = \sin^{7/2} x$ and the *x*-axis between x = 0 and $x = \pi/2$ is rotated through 2π radians about the *x*-axis. Find the volume of the solid that is generated by this rotation.

[4, 4 marks]

[8 marks]

- (b) A function y is defined by $x^{\frac{1}{2}} \frac{1}{3}x^{\frac{3}{2}}$.
 - (i) Evaluate $\frac{dy}{dx}$, and show that $1 + \left(\frac{dy}{dx}\right)^2 = \frac{(x+1)^2}{4x}$. (ii) The part of the curve of this function y between x = 0 and x = 3 is rotated by 2π
 - (ii) The part of the curve of this function y between x = 0 and x = 3 is rotated by 2π radians about the x-axis. Find the area of the surface of revolution so formed. [3, 4 marks]