

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

ADVANCED MATRICULATION LEVEL 2020 FIRST SESSION

SUBJECT:	Pure Mathematics
PAPER NUMBER:	Ι
DATE:	10 th September 2020
TIME:	09:00 to 12:05

Directions to Candidates

Answer **ALL** questions.

Each question carries 10 marks.

Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. Use partial fractions to solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y(y+1)}{x(x-1)} = 0,$$

giving your answer in the form y = f(x).

[10 marks]

2. (a) Let $y = (x^2 + 1)e^{2x}$. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$, and show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = 2e^{2x}.$$

[5 marks]

(b) A curve has equation $y^2 - 3xy + x^2 + 11 = 0$. Find the equation of the tangent line to the curve at the point (3, 4).

[5 marks]

3. The lines ℓ_1 and ℓ_2 have vector equations

$$\mathbf{r} = 5\mathbf{i} + 4\mathbf{j} + \alpha\mathbf{k} + \lambda(2\mathbf{i} + 5\mathbf{j})$$
$$\mathbf{r} = 6\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \mu(\mathbf{i} + \mathbf{j} - \mathbf{k})$$

respectively.

(a) Find α given that the lines intersect, and find the position vector of the point of intersection *P*.

[4 marks]

- (b) Let A be the point on l₁ that corresponds to λ = 1 and let B be the point on l₂ that corresponds to μ = −1. Find the angle ∠APB and the distance between A and B.
 [6 marks]
- 4. The function $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = e^{2\sin x} + 2$. (a) Find the range of f.

[2 marks]

[1, 1 marks]

(b) (i) Explain why *f* is not an injection (i.e. one-one).
(ii) State whether or not *f* is a surjection (i.e. onto). Give reasons for your answer.

(c) A new function g is now defined as follows: $g: \left[\frac{\pi}{2}, k\right] \to A$, where $g(x) = e^{2\sin x} + 2$ and $k \ge \frac{\pi}{2}$.

- (i) Find the maximum value of k for which g is an injection. For this value of k, what values can A take to make g(x) a bijection (i.e. one-one and onto)?
- (ii) For the values of k and A found in part (i), find an expression for the inverse function $g^{-1}(x)$ and state its domain.

[3, 3 marks]

- 5. (a) The first term in a progression is 36 and the second term is 32.
 - (i) Given that the progression is geometric, find the sum to infinity.
 - (ii) Given instead that the progression is arithmetic, find the number of terms in the progression if the sum of all the terms is 0.

[2, 3 marks]

(b) Let
$$i = \sqrt{-1}$$
. Given that

$$z = \frac{\cos 8\theta + i \sin 8\theta - 1}{\sin 4\theta + 2i - 2i \sin^2 2\theta}, \quad \left(\theta \neq k \frac{\pi}{4} \text{ for } k \in \mathbb{Z}\right)$$

show that $|z| = 2|\sin 2\theta|$ and $\arg z - 6\theta = 2n\pi$ for some $n \in \mathbb{Z}$.

[5 marks]

- 6. Let $f(x) = 5x^3 + 8x^2 + 2x + 12$, where $x \in \mathbb{R}$.
 - (a) Show that f(x) can be written in the form (x+2)g(x) where g(x) is a quadratic expression satisfying g(x) > 0 for every $x \in \mathbb{R}$.
 - (b) Solve the inequality f(x) > 0.
 - (c) Hence, or otherwise, find all values of θ in $[0, \pi] \setminus \left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}\right\}$ for which

$$5\tan^3 2\theta + 8\tan^2 2\theta + 2\tan 2\theta + 12 > 0.$$

[4 marks]

[5 marks]

[1 marks]

7. (a) Use an appropriate trigonometric identity to evaluate the integral

$$\int_0^{\frac{\pi}{4}} \sqrt{1 + \cos 4x} \, \mathrm{d}x.$$

[5 marks]

(b) Use integration by parts to find the integral

$$\int (x^2 - 2x + 1)e^{2x} \,\mathrm{d}x.$$

[5 marks]

8. (a) The coordinates (x, y) of a point *P* are given in terms of the parameter *t* by the equations $\sin t = \frac{y-1}{2}$ and $\tan t = \frac{y-1}{x-1}$. Find the Cartesian equation of the locus C_1 of *P*, and hence deduce that it is a circle with centre (1, 1) and radius 2.

[4 marks]

(b) A circle C_2 with centre (a, 1) and radius r lies inside C_1 and touches C_1 internally at one point. Determine the possible equations of C_2 , distinguishing between the ranges of values of a for which each equation is valid.

[6 marks]

9. Let the matrix **A** be given by $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where *a*, *b*, *c* and *d* can randomly take any value from $\{-\sqrt{2}, 0, \sqrt{2}\}$.

- (a) How many different matrices **A** can be formed?
- (b) What is the probability that the matrix formed is invertible?

[5 marks]

[2 marks]

(c) What is the probability that the matrix formed is invertible and has at least one entry equal to zero?

[3 marks]

- 10. (a) Let $f(x) = (\sqrt{3} 2\sin\theta)x^2 + x\sin\theta + (\sqrt{3} + 2\sin\theta)$. Giving your answers in degrees and correct to 2 decimal places find:
 - (i) all real values of θ such that the graph y = f(x) is a straight line;
 - (ii) all real values of θ for which the equation f(x) = 0 has exactly one real solution.

[2, 3 marks]

(b) Show that for every real value u, the quadratic equation

$$(2e^{u}-1)x^{2}+3e^{u}x+(e^{u}-1)=0$$

has real solutions.

[5 marks]

AM 27/II.20M

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

SUBJECT: PAPER NUMBER: DATE: TIME: **Pure Mathematics** II 12th September 2020 09:00 to 12:05

Directions to Candidates

Answer **SEVEN** questions. Each question carries 15 marks. Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) Solve the first order linear differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tan x = \sin x, \qquad \text{where } 0 \le x < \frac{\pi}{2},$$

given that y = 2 when x = 0. Give your answer in the form y = f(x).

(b) Solve the differential equation

-Università

ta' Malta

$$\frac{d^2 y}{dx^2} - \frac{dy}{dx} = 2\sin x$$

given that $y = 5$ and $\frac{dy}{dx} = 1$ when $x = 0$.

[7, 8 marks]

- 2. (Note that angles should be taken in radians throughout this question.)
 - (a) Show that the equation $3\ln(x^2+1) = \cos 2x + 1$ has a solution between 0 and 1. Use the Newton-Raphson method to find an approximate value of this solution, taking 1 as a first approximation. Do **two** iterations and give your working to **four** decimal places.

[7 marks]

- (b) (i) Obtain an approximate value of ln 1.2 by finding the integral of the function $f(x) = \frac{1}{x}$ from 1 to 1.2 using the Trapezoidal Rule with an interval width of h = 0.05. Give your answer to **four** decimal places.
 - (ii) Write down the series expansion of $\ln(1 + x)$ up to and including the term in x^4 . Use this series expansion to obtain an approximate value of $\ln 1.2$. Give your answer to **four** decimal places.

[4, 4 marks]

3. (a) (i) Let $I_n = \int x^n \sqrt{1+x} \, \mathrm{d}x$. Show that

$$I_n = \frac{2}{2n+3} x^n (1+x)^{\frac{3}{2}} - \frac{2n}{2n+3} I_{n-1}.$$

- (ii) The region bounded by the curve $y = 3x(1+x)^{\frac{1}{4}}$ and the *x*-axis between x = 1 and x = 3 is rotated through 2π radians about the *x*-axis. Find the volume of the solid that is generated by this rotation.
- (b) (i) Show that

$$\left(1+\frac{1}{t^{\frac{2}{3}}}\right)^{\frac{1}{2}} = t^{-\frac{1}{3}} \left(1+t^{\frac{2}{3}}\right)^{\frac{1}{2}}.$$

(ii) A curve is given parametrically by x = 2t and $y = 3t^{\frac{2}{3}}$. Find the length of the arc of the curve from the point where t = 1 to the point where t = 8.

[1, 5 marks]

[5, 4 marks]

4. (a) (i) Express
$$\frac{5r+13}{(r+2)(r+3)(r+5)}$$
 into partial fractions.
(ii) Hence, evaluate

$$S_n = \sum_{r=1}^n \frac{5r+13}{(r+2)(r+3)(r+5)}$$

(iii) Deduce S_{∞} .

[2, 5, 1 marks]

- (b) In a fashion retail outlet, 90% of the items are equipped with an activated security tag that is automatically scanned by an alarm system installed at the door, while the others have a fake security tag. There is 98% chance that an item which has not been paid for triggers the alarm, whereas there is a 7% chance that the alarm is triggered by a duly paid item. From previous surveys, it is known that 3% of the people entering the outlet try to exit without paying for an item (it can be assumed that this percentage is independent of the number of items carried by a person). What is the probability that:
 - (i) A person carrying one item does not trigger the alarm while exiting the outlet?
 - (ii) A person carrying three items triggers the alarm while exiting?

[3, 4 marks]

5. The curve \mathscr{C} has polar equation $r = f(\theta)$ for $0 \le \theta \le 2\pi$, where $f(\theta) = 2 + \frac{7}{2}\cos 4\theta$.

- (a) Show that
 - (i) $f(\theta) = f(-\theta)$, and (ii) $f(\frac{\pi}{2} - \theta) = f(\frac{\pi}{2} + \theta)$.

Hence, deduce that $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$ are lines of symmetry of $r = f(\theta)$.

- (b) Find the equations of the tangents to the curve at the pole for $0 \le \theta \le \frac{\pi}{2}$.
- [3 marks]
 (c) By using the symmetry properties of *r* = *f*(θ) and taking values of θ at intervals of π/12 for 0 ≤ θ ≤ π/2, or otherwise, sketch the curve *C*.
- (d) Find the area enclosed within all the loops of the curve \mathscr{C} .

[4 marks] [5 marks]

[3 marks]

- 6. The planes Π_1 and Π_2 have equations 3x + y 4z = 10 and x + y z = 5, respectively: (a) Find the point 4 that lies on both planes and has *x*-coordinate equal to 4. Find the
 - (a) Find the point A that lies on both planes and has x-coordinate equal to 4. Find the equation of the line ℓ₁ where the two planes intersect.
 [6 marks]
 - (b) Find the equation of the plane Π_3 that contains the line ℓ_1 and passes through the origin.
 - (c) The points *B* and *C* have coordinates (2, -3, 2) and (1, 4, -1) respectively. Find the area of the triangle *ABC*.

[5 marks]

[4 marks]

7. In this question $i = \sqrt{-1}$ and $x, y \in \mathbb{R}$. Let P(x, y) be the point on an Argand diagram representing the complex number z = x + iy and satisfying the equation

$$|z+a| = k|z+ib|,$$

where *a*, *b* and *k* are constant real numbers, and $k \ge 0$.

- (a) Describe the locus of P(x, y) in the case when k = 0 and in the case when k = 1.
- [3 marks]
 (b) Show that if k ≠ 0 and k ≠ 1, then the locus of P(x, y) is a circle. Find the coordinates of the centre and the radius of the circle in terms of a, b and k.

[8 marks]

Hence, or otherwise, show that
$$\frac{5}{24}(\sqrt{101} + \sqrt{29})$$
 is the greatest value of $|z|$ when

$$\left|\frac{z+5i}{z-2}\right| = 5.$$

[4 marks]

8. (a) Use the principle of mathematical induction to prove that for every integer $n \ge 1$,

$$\sum_{r=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}.$$

(b) The function *f* is defined by $f(x) = xe^{2x}$. Prove by the principle of mathematical induction that for every integer $n \ge 1$,

$$f^{(n)}(x) \equiv \frac{d^n}{dx^n} (xe^{2x}) = 2^{n-1}(2x+n)e^{2x},$$

where $f^{(n)}(x)$ represents the n^{th} derivative of f(x).

[8 marks]

[7 marks]

9. (a) Let *a*, *b* and *c* be real numbers and consider the following system of linear equations in unknowns *x*, *y* and *z*:

$$x + 2y - 3z = a$$

$$2x + 6y - 11z = b$$

$$x - 2y + 7z = c.$$
(*)

- (i) Show that the system of equations (*) does not have a unique solution, irrespective of the values of *a*, *b* and *c*. What condition must be placed on *a*, *b* and *c* so that (*) has a solution?
- (ii) Solve the equations when a = c = 1 and b = 2.
- (b) Find all matrices $\mathbf{B} = \begin{pmatrix} t & u \\ v & w \end{pmatrix}$ that commute with $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$; that is $\mathbf{AB} = \mathbf{BA}$. [5 marks]
- 10. The function *f* is given by $f(x) = \frac{6x^2 7x + 2}{2x^2 + 7x + 3}$.
 - (a) Determine the equations of the asymptotes of the curve y = f(x).
 - (b) Find where the curve y = f(x) cuts the coordinate axes.
 - (c) Find the stationary points of the curve y = f(x) and determine their nature.
 - (d) Sketch the curve of y = f(x).
 - (e) Hence, show that the equation f(x) = x + 3 has only one real root by marking this root on your graph.

[2 marks]

[3 marks]

[2 marks]

[4 marks]

[4 marks]

[о шагкя]