

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

ADVANCED MATRICULATION LEVEL 2021 FIRST SESSION

SUBJECT:	Pure Mathematics
PAPER NUMBER:	I
DATE:	12 th June 2021
TIME:	09:00 to 12:05

Directions to Candidates

Answer ALL questions.

Each question carries 10 marks.

Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. Solve the differential equation

 $(3+x)(3x+1)\cos y \, dy - 2x(1+\sin y) \, dx = 0$,

giving your answer in the form $|1 + \sin y|^p = \frac{c|3 + x|^q}{|1 + 3x|}$, where *c* is a constant. Give the values of *p* and *q*.

[10 marks]

2. (a) Let $y = e^{-(x^{\frac{3}{2}})}$. Show that

$$4x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 9x^2y = 0.$$

[5 marks]

(b) A curve has equation $2y^2 + 4xy - 3x^2 = 3$. Find the equation of the normal to the curve at the point (-1,3).

[5 marks]

3. The point *A* has position vector $\mathbf{i} + 5\mathbf{k}$ and the line ℓ_1 has vector equation

$$\mathbf{r} = 7\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} + \lambda(5\mathbf{i} + 3\mathbf{j} + \mathbf{k}).$$

- (a) Find the equation of the line ℓ_2 that passes through A and is perpendicular to ℓ_1 .
- (b) Find the distance between *A* and the point *B* where the lines ℓ_1 and ℓ_2 intersect.

[3 marks]

[7 marks]

4. (a) The real functions f and g are defined by

$$f(x) = \frac{x}{x+1}$$
 and $g(x) = \frac{1}{x-2}$.

Determine the composite function $f \circ g$ and state its domain.

(b) A function *f* is defined by $f(x) = \frac{5}{2x} + 7$ for real values of $x \neq 0$. Define the inverse function f^{-1} stating its domain and range. Hence, find also the range of *f*.

[5 marks]

[5 marks]

5. (a) Find *a* and *b* given that

$$\frac{3+7i}{10+4i} = a+ib \,.$$

Given that 1/(a + ib) is a root of the equation $z^2 + \alpha z + \beta = 0$, find the real numbers α and β .

[5 marks]

(b) Express $\sqrt{3}\sin\theta - 4\cos\theta$ in the form $R\sin(\theta - \alpha)$, where R > 0 and $0^\circ \le \alpha \le 90^\circ$, giving the exact value of *R* and the value of α correct to 2 decimal places. Find the smallest positive angle θ at which $\sqrt{3}\sin\theta - 4\cos\theta$ takes its maximum value.

[5 marks]

6. (a) If x + 4 is a factor of $f(x) = 6x^3 + kx^2 - 19x - 60$, find the value of k and express f(x) as a product of linear factors.

[5 marks]

(b) Show that $x \log_4 32 + y \log_8 4 = \frac{5x}{2} + \frac{2y}{3}$. Hence, solve the following two simultaneous equations:

$$x \log_4 32 + y \log_8 4 = \frac{17}{6}$$
$$\log_2 x^3 + \log_2 y = 2 \log_2 x.$$

[5 marks]

- 7. (a) Use an appropriate substitution to find the integral $\int \frac{x^2}{x^3+1} \, \mathrm{d}x$.
 - (b) Use integration by parts to find the integral $\int e^{3x} \cos x \, dx$.

[6 marks]

[4 marks]

8. (a) Expand $\left(1-\frac{x}{2}\right)^{\frac{1}{3}}$ in ascending powers of *x*, up to and including the term in x^3 . Use this expansion to find $\sqrt[3]{999}$ correct up to 4 decimal places.

[6 marks]

(b) What is the least number of terms that must be taken from of the geometric series 2+10+50+250+1250+... so that the sum exceeds one million?

[4 marks]

- 9. (a) Find the image of the points with coordinates (1,0) and (0,1) under a clockwise rotation by a non-reflex angle α about the origin. Hence, deduce the matrix **P** representing the given linear transformation in the plane.
 - (b) Deduce the matrix \mathbf{Q} representing an anticlockwise rotation by a non-reflex angle β about the origin.
 - (c) When are the two matrices **P** and **Q** the inverses of each other?
 - (d) Given that $\alpha > \beta$, find the image of the point having coordinates (1, 1) after undergoing the transformation **P** followed by the transformation **Q** (giving your answer in its simplest form).
 - (e) Would the image of the point (1, 1) be the same if the order of the transformations described above is reversed? Explain briefly why.

[3, 1, 1, 3, 2 marks]

- 10. (a) The graph of y = f(x) cuts the *y*-axis at the point (0, b), where *b* is a constant. For any constant *a*, where would the graphs of the following three functions cut the *y*-axis?
 - (i) y = f(x) + a;
 - (ii) y = a f(x);
 - (iii) y = a(f(x) + a).

[1, 1, 1 marks]

- (b) (i) How many different 6-digit binary numbers (that is, using only the digits 0 and 1) can be formed?
 - (ii) A binary number is called a palindrome if it reads the same backward and forward. How many 6-digit binary numbers are palindrome?
 - (iii) What is the probability that a 6-digit binary number chosen at random is a palindrome starting with the digit 1.

[2, 2, 3 marks]

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

ADVANCED MATRICULATION LEVEL 2021 FIRST SESSION

SUBJECT:	Pure Mathematics
PAPER NUMBER:	II
DATE:	14 th June 2021
TIME:	09:00 to 12:05

Directions to Candidates

Answer **SEVEN** questions. Each question carries 15 marks. Graphical calculators are **not** allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) Solve the first order linear differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = 4x^2 - 3x, \qquad \text{where } x > 0,$$

given that y = 1 when x = 1. Give your answer in the form y = f(x).

(b) Solve the differential equation

$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + 5y = 10x^2 - 3x - 3,$$

given that y = 0 and $\frac{dy}{dx} = 4$ when x = 0.

[8 marks]

- 2. (Note that angles should be taken in radians throughout this question.)
 - (a) Show that the equation $e^{-x^2} = x$ has a solution between 0 and 1. Use the Newton-Raphson method to find an approximate value of this solution, taking 1 as a first approximation. Do **two** iterations and give your working to **four** decimal places.
- [8 marks] (b) Evaluate the integral $\int_{0}^{1} \ln(1 + \cos x) dx$ by Simpson's Rule with an interval width of h = 0.25. Give your answer to **four** decimal places.

[7 marks]

[7 marks]

3. (a) (i) Show that $\cot^2 x + 1 = \csc^2 x$. (ii) Let $I_n = \int \cot^n x \, dx$. Show that

$$(n-1)I_n = -\cot^{n-1}x - (n-1)I_{n-2}$$

[Hint: write $\cot^n x$ as $\cot^{n-2} x \cot^2 x$.]

- (iii) The region bounded by the curve $y = \cot^{5/2} x$ and the *x*-axis between $x = \pi/6$ and $x = \pi/4$ is rotated through 2π radians about the *x*-axis. Show that the volume of the solid that is generated by this rotation is $(1 + \frac{\ln 2}{2})\pi$.
 - [2, 5, 4 marks]
- (b) A curve is given parametrically by $x = t 2t^2$ and $y = \frac{8}{3}t^{3/2}$. Find the length of the arc of the curve from the point where t = 2 to the point where t = 5.

[4 marks]

4. (a) (i) Express
$$\frac{3x+4}{x^3+3x^2+2x}$$
 into partial fractions.
(ii) Determine $S_n = \sum_{r=1}^n \frac{3r+4}{r^3+3r^2+2r}$ and S_∞ .

(iii) Evaluate

$$\frac{10}{2 \cdot 3 \cdot 4} + \frac{13}{3 \cdot 4 \cdot 5} + \frac{16}{4 \cdot 5 \cdot 6} + \dots + \frac{34}{10 \cdot 11 \cdot 12}.$$

[2, 6, 2 marks]

(b) Given that $f(x) = \frac{1}{(x+1)(x+2)}$ and its n^{th} derivative is given by

$$f^{(n)}(x) = n! \left(\frac{1}{(-x-2)^{n+1}} - \frac{1}{(-x-1)^{n+1}} \right),$$

- (i) find the coefficient of x^n in the Maclaurin's series of f(x); and
- (ii) write down the first **four** terms of this series.

[2, 3 marks]

5. (a) Obtain an expression for $\sum_{r=1}^{n} (3r-2)^2$ in terms of *n*. Hence, find

$$4^2 + 7^2 + 10^2 + 13^2 + \ldots + 28^2$$
.

[3, 3 marks]

- (b) The circle 𝒞 has Cartesian equation given by (x − 1)² + (y − 4)² = 17.
 (i) Write the equation of 𝒞 in polar form.
 - (ii) Find the area of the region bounded by the circle \mathscr{C} , the initial line and the half-line $\theta = \frac{\pi}{2}$.

[3, 6 marks]

6. The points *A*, *B* and *C* have position vectors $2\mathbf{i} + \mathbf{j} + 4\mathbf{k}$, $3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$ and $\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$, respectively. (a) Find the volume of the parallelepiped with sides \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} .

[3 marks]

[6 marks]

- (b) Find the equation of the plane Π containing *A*, *B* and *C*.
- (c) The line ℓ passes through the origin and is perpendicular to Π . Find the point of intersection *D* of ℓ with Π . Find also the distance of Π from the origin.

[4, 2 marks]

7. (a) Consider the following two quadratic functions of $z \in \mathbb{C}$,

$$f(z) = z^{2} + az + 13$$

g(z) = z² + bz + 2,

where *a* and *b* are positive integers.

- (i) Find **all** the possible values that *a* and *b* can take given that f(z) g(z) is constant and the equation $f(z) \cdot g(z) = 0$ has no real solution.
- (ii) By considering the expression for $f(z) \cdot g(z)$, solve the equation

$$z^4 + 4z^3 + 19z^2 + 30z + 26 = 0,$$

given that it has no real roots. Find the modulus and argument of each root.

[4, 4 marks]

(b) Express sin x and cos x in terms of e^{ix} and e^{-ix} . Hence, find the value of k for which

$$\sin^5 x \cos^5 x = \frac{1}{k} (\sin 10x - 5\sin 6x + 10\sin 2x).$$

[7 marks]

8. (a) Use the principle of mathematical induction to prove that for every integer $n \ge 1$,

$$\sum_{k=1}^{n} (-1)^{k} k^{2} = \frac{(-1)^{n} n(n+1)}{2}.$$

[5 marks]

(b) Show that for any real $x \ge 1$

$$\frac{1}{\sqrt{3(x-1)+1}} \cdot \frac{2x-1}{2x} \le \frac{1}{\sqrt{3x+1}}.$$

[5 marks]

(c) Use (b) and the principle of mathematical induction to prove that for every integer $n \ge 1$,

$$\frac{1}{2} \times \frac{3}{4} \times \dots \times \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}}.$$
[5 marks]

9. Consider the following system of equations:

$$3x + 2y + z = \lambda_1$$

$$x + ay + bz = \lambda_2$$

$$-x - 2y - 3z = \lambda_3.$$

- (a) Show that if a = b = 1, then the equations are consistent only when $\lambda_1 4\lambda_2 \lambda_3 = 0$.
- (b) Let a = -1 and b = -2.
 - (i) Show that, in this case the three equations have a unique solution and find x, y, z in terms of λ_1 , λ_2 and λ_3 .
 - (ii) Determine x, y, z given that $\lambda_1 2\lambda_2 + \lambda_3 = 0$, $\lambda_1 = 5$ and $\lambda_3 = -3\lambda_2$.

[6, 3 marks]

[6 marks]

- 10. The function *f* is given by $f(x) = \frac{x^2 9}{4x 3}$. (a) Determine the equations of the vertical and oblique asymptotes of the curve y = f(x).
 - [4 marks]
 - (b) Find where the curve y = f(x) cuts the coordinate axes.

[3 marks]

[6 marks]

- (c) On the same diagram, sketch the curve of y = f(x) and $y = \frac{1}{f(x)}$.
- (d) Hence, deduce that the equation $(f(x))^2 = 1$ has two positive real roots and two negative real roots. Mark these roots on your graph.

[2 marks]