MATRICULATION AND SECONDARY EDUCATION CERTIFICATE

L-Università ta' Malta

SUBJECT:	Pure Mathematics
PAPER NUMBER:	I
DATE:	$12^{\text {th }}$ June 2021
TIME:	$09: 00$ to $12: 05$

Directions to Candidates

Answer ALL questions.

Each question carries 10 marks.
Graphical calculators are not allowed however scientific calculators can be used but all necessary working must be shown.

1. Solve the differential equation

$$
(3+x)(3 x+1) \cos y \mathrm{~d} y-2 x(1+\sin y) \mathrm{d} x=0,
$$

giving your answer in the form $|1+\sin y|^{p}=\frac{c|3+x|^{q}}{|1+3 x|}$, where c is a constant. Give the values of p and q.
2. (a) Let $y=e^{-\left(x^{\frac{3}{2}}\right)}$. Show that

$$
4 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-9 x^{2} y=0 .
$$

(b) A curve has equation $2 y^{2}+4 x y-3 x^{2}=3$. Find the equation of the normal to the curve at the point $(-1,3)$.
3. The point A has position vector $\mathbf{i}+5 \mathbf{k}$ and the line ℓ_{1} has vector equation

$$
\mathbf{r}=7 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}+\lambda(5 \mathbf{i}+3 \mathbf{j}+\mathbf{k}) .
$$

(a) Find the equation of the line ℓ_{2} that passes through A and is perpendicular to ℓ_{1}.
(b) Find the distance between A and the point B where the lines ℓ_{1} and ℓ_{2} intersect.
4. (a) The real functions f and g are defined by

$$
f(x)=\frac{x}{x+1} \quad \text { and } \quad g(x)=\frac{1}{x-2} .
$$

Determine the composite function $f \circ g$ and state its domain.
[5 marks]
(b) A function f is defined by $f(x)=\frac{5}{2 x}+7$ for real values of $x \neq 0$. Define the inverse function f^{-1} stating its domain and range. Hence, find also the range of f.
[5 marks]
5. (a) Find a and b given that

$$
\frac{3+7 i}{10+4 i}=a+i b
$$

Given that $1 /(a+i b)$ is a root of the equation $z^{2}+\alpha z+\beta=0$, find the real numbers α and β.
(b) Express $\sqrt{3} \sin \theta-4 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where $R>0$ and $0^{\circ} \leq \alpha \leq 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. Find the smallest positive angle θ at which $\sqrt{3} \sin \theta-4 \cos \theta$ takes its maximum value.
6. (a) If $x+4$ is a factor of $f(x)=6 x^{3}+k x^{2}-19 x-60$, find the value of k and express $f(x)$ as a product of linear factors.
(b) Show that $x \log _{4} 32+y \log _{8} 4=\frac{5 x}{2}+\frac{2 y}{3}$. Hence, solve the following two simultaneous equations:

$$
\begin{aligned}
x \log _{4} 32+y \log _{8} 4 & =\frac{17}{6} \\
\log _{2} x^{3}+\log _{2} y & =2 \log _{2} x .
\end{aligned}
$$

7. (a) Use an appropriate substitution to find the integral $\int \frac{x^{2}}{x^{3}+1} \mathrm{~d} x$.
(b) Use integration by parts to find the integral $\int e^{3 x} \cos x \mathrm{~d} x$.
[4 marks]
[6 marks]
8. (a) Expand $\left(1-\frac{x}{2}\right)^{\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^{3}. Use this expansion to find $\sqrt[3]{999}$ correct up to 4 decimal places.
[6 marks]
(b) What is the least number of terms that must be taken from of the geometric series $2+10+50+250+1250+\ldots$ so that the sum exceeds one million?
9. (a) Find the image of the points with coordinates $(1,0)$ and $(0,1)$ under a clockwise rotation by a non-reflex angle α about the origin. Hence, deduce the matrix \mathbf{P} representing the given linear transformation in the plane.
(b) Deduce the matrix \mathbf{Q} representing an anticlockwise rotation by a non-reflex angle β about the origin.
(c) When are the two matrices \mathbf{P} and \mathbf{Q} the inverses of each other?
(d) Given that $\alpha>\beta$, find the image of the point having coordinates $(1,1)$ after undergoing the transformation \mathbf{P} followed by the transformation \mathbf{Q} (giving your answer in its simplest form).
(e) Would the image of the point $(1,1)$ be the same if the order of the transformations described above is reversed? Explain briefly why.
[3, 1, 1, 3, 2 marks]
10. (a) The graph of $y=f(x)$ cuts the y-axis at the point $(0, b)$, where b is a constant. For any constant a, where would the graphs of the following three functions cut the y-axis?
(i) $y=f(x)+a$;
(ii) $y=a f(x)$;
(iii) $y=a(f(x)+a)$.
[1, 1, 1 marks]
(b) (i) How many different 6-digit binary numbers (that is, using only the digits 0 and 1) can be formed?
(ii) A binary number is called a palindrome if it reads the same backward and forward. How many 6 -digit binary numbers are palindrome?
(iii) What is the probability that a 6-digit binary number chosen at random is a palindrome starting with the digit 1 .
[2, 2, 3 marks]

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE

SUBJECT:	Pure Mathematics
PAPER NUMBER:	II
DATE:	$14^{\text {th }}$ June 2021
TIME:	$09: 00$ to 12:05

Directions to Candidates

Answer SEVEN questions. Each question carries 15 marks.
Graphical calculators are not allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) Solve the first order linear differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=4 x^{2}-3 x, \quad \text { where } x>0
$$

given that $y=1$ when $x=1$. Give your answer in the form $y=f(x)$.
(b) Solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=10 x^{2}-3 x-3
$$

given that $y=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$ when $x=0$.
[8 marks]
2. (Note that angles should be taken in radians throughout this question.)
(a) Show that the equation $e^{-x^{2}}=x$ has a solution between 0 and 1 . Use the Newton-Raphson method to find an approximate value of this solution, taking 1 as a first approximation. Do two iterations and give your working to four decimal places.
(b) Evaluate the integral $\int_{0}^{1} \ln (1+\cos x) \mathrm{d} x$ by Simpson's Rule with an interval width of $h=0.25$. Give your answer to four decimal places.
3. (a) (i) Show that $\cot ^{2} x+1=\operatorname{cosec}^{2} x$.
(ii) Let $I_{n}=\int \cot ^{n} x \mathrm{~d} x$. Show that

$$
(n-1) I_{n}=-\cot ^{n-1} x-(n-1) I_{n-2} .
$$

[Hint: write $\cot ^{n} x$ as $\cot ^{n-2} x \cot ^{2} x$.]
(iii) The region bounded by the curve $y=\cot ^{5 / 2} x$ and the x-axis between $x=\pi / 6$ and $x=\pi / 4$ is rotated through 2π radians about the x-axis. Show that the volume of the solid that is generated by this rotation is $\left(1+\frac{\ln 2}{2}\right) \pi$.
[2, 5, 4 marks]
(b) A curve is given parametrically by $x=t-2 t^{2}$ and $y=\frac{8}{3} t^{3 / 2}$. Find the length of the arc of the curve from the point where $t=2$ to the point where $t=5$.
4. (a) (i) Express $\frac{3 x+4}{x^{3}+3 x^{2}+2 x}$ into partial fractions.
(ii) Determine $S_{n}=\sum_{r=1}^{n} \frac{3 r+4}{r^{3}+3 r^{2}+2 r}$ and S_{∞}.
(iii) Evaluate

$$
\frac{10}{2 \cdot 3 \cdot 4}+\frac{13}{3 \cdot 4 \cdot 5}+\frac{16}{4 \cdot 5 \cdot 6}+\cdots+\frac{34}{10 \cdot 11 \cdot 12} .
$$

(b) Given that $f(x)=\frac{1}{(x+1)(x+2)}$ and its $n^{\text {th }}$ derivative is given by

$$
f^{(n)}(x)=n!\left(\frac{1}{(-x-2)^{n+1}}-\frac{1}{(-x-1)^{n+1}}\right),
$$

(i) find the coefficient of x^{n} in the Maclaurin's series of $f(x)$; and
(ii) write down the first four terms of this series.
5. (a) Obtain an expression for $\sum_{r=1}^{n}(3 r-2)^{2}$ in terms of n. Hence, find

$$
4^{2}+7^{2}+10^{2}+13^{2}+\ldots+28^{2}
$$

[3, 3 marks]
(b) The circle \mathscr{C} has Cartesian equation given by $(x-1)^{2}+(y-4)^{2}=17$.
(i) Write the equation of \mathscr{C} in polar form.
(ii) Find the area of the region bounded by the circle \mathscr{C}, the initial line and the half-line $\theta=\frac{\pi}{2}$.
6. The points A, B and C have position vectors $2 \mathbf{i}+\mathbf{j}+4 \mathbf{k}, 3 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}$ and $\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}$, respectively.
(a) Find the volume of the parallelepiped with sides $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$.
(b) Find the equation of the plane Π containing A, B and C.
(c) The line ℓ passes through the origin and is perpendicular to Π. Find the point of intersection D of ℓ with Π. Find also the distance of Π from the origin.
[4, 2 marks]
7. (a) Consider the following two quadratic functions of $z \in \mathbb{C}$,

$$
\begin{aligned}
& f(z)=z^{2}+a z+13 \\
& g(z)=z^{2}+b z+2,
\end{aligned}
$$

where a and b are positive integers.
(i) Find all the possible values that a and b can take given that $f(z)-g(z)$ is constant and the equation $f(z) \cdot g(z)=0$ has no real solution.
(ii) By considering the expression for $f(z) \cdot g(z)$, solve the equation

$$
z^{4}+4 z^{3}+19 z^{2}+30 z+26=0
$$

given that it has no real roots. Find the modulus and argument of each root.
(b) Express $\sin x$ and $\cos x$ in terms of $e^{i x}$ and $e^{-i x}$. Hence, find the value of k for which

$$
\sin ^{5} x \cos ^{5} x=\frac{1}{k}(\sin 10 x-5 \sin 6 x+10 \sin 2 x) .
$$

8. (a) Use the principle of mathematical induction to prove that for every integer $n \geq 1$,

$$
\sum_{k=1}^{n}(-1)^{k} k^{2}=\frac{(-1)^{n} n(n+1)}{2}
$$

(b) Show that for any real $x \geq 1$

$$
\frac{1}{\sqrt{3(x-1)+1}} \cdot \frac{2 x-1}{2 x} \leq \frac{1}{\sqrt{3 x+1}} .
$$

(c) Use (b) and the principle of mathematical induction to prove that for every integer $n \geq 1$,

$$
\frac{1}{2} \times \frac{3}{4} \times \cdots \times \frac{2 n-1}{2 n} \leq \frac{1}{\sqrt{3 n+1}} .
$$

9. Consider the following system of equations:

$$
\begin{aligned}
3 x+2 y+z & =\lambda_{1} \\
x+a y+b z & =\lambda_{2} \\
-x-2 y-3 z & =\lambda_{3} .
\end{aligned}
$$

(a) Show that if $a=b=1$, then the equations are consistent only when $\lambda_{1}-4 \lambda_{2}-\lambda_{3}=0$.
(b) Let $a=-1$ and $b=-2$.
(i) Show that, in this case the three equations have a unique solution and find x, y, z in terms of λ_{1}, λ_{2} and λ_{3}.
(ii) Determine x, y, z given that $\lambda_{1}-2 \lambda_{2}+\lambda_{3}=0, \lambda_{1}=5$ and $\lambda_{3}=-3 \lambda_{2}$.
[6, 3 marks]
10. The function f is given by $f(x)=\frac{x^{2}-9}{4 x-3}$.
(a) Determine the equations of the vertical and oblique asymptotes of the curve $y=f(x)$.
(b) Find where the curve $y=f(x)$ cuts the coordinate axes.
[4 marks]
(c) On the same diagram, sketch the curve of $y=f(x)$ and $y=\frac{1}{f(x)}$.
(d) Hence, deduce that the equation $(f(x))^{2}=1$ has two positive real roots and two negative real roots. Mark these roots on your graph.

