MATRICULATION AND SECONDARY EDUCATION CERTIFICATE

ADVANCED MATRICULATION LEVEL

 2022 FIRST SESSION| SUBJECT: | Pure Mathematics |
| :--- | :--- |
| PAPER NUMBER: | I |
| DATE: | $7^{\text {th }}$ May 2022 |
| TIME: | $09: 00$ to $12: 05$ |

Directions to Candidates

Answer ALL questions.

Each question carries 10 marks.
Graphical calculators are not allowed however scientific calculators can be used but all necessary working must be shown.

1. Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k x y-y}{x-k x y}, \quad \text { where } k=\ln 2 \text { and } x, y>0
$$

given that $y=1$ when $x=1$. Give your answer in the form $P x y=2^{Q x+R y}$, where the values of P, Q and R need to be determined.
2. A curve is given by the implicit equation

$$
x^{2}+2 x y+3 y^{2}=18 .
$$

(a) Find the coordinates of the stationary points of the curve.
(b) Show that, at the stationary points, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{x+3 y}$.
(c) Hence, determine the nature of the stationary points.
3. The lines ℓ_{1} and ℓ_{2} have vector equations

$$
\begin{aligned}
\mathbf{r}_{1} & =4 \mathbf{i}+\mathbf{j}+7 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+2 \mathbf{k}), \\
\mathbf{r}_{2} & =5 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k}+\mu(3 \mathbf{i}-5 \mathbf{j}-\mathbf{k}),
\end{aligned}
$$

respectively.
(a) Find the point of intersection A of the two lines.
[4 marks]
(b) The point B has position vector $11 \mathbf{i}+6 \mathbf{j}-5 \mathbf{k}$. Show that the line passing through A and B is perpendicular to both ℓ_{1} and ℓ_{2}.
(c) Find the angle made by the lines ℓ_{1} and ℓ_{2}.
[2 marks]
4. (a) If $f(x+1)=4 x^{2}+x$, find the function $f(x)$.
[4 marks]
(b) Consider the real function $f(x)=\ln (x-1)+\ln 3$ for $x>1$.
(i) Find the inverse function $f^{-1}(x)$.
(ii) Let $g(x)=e^{x}$. Determine the composite function $(g \circ f)(x)$, giving your answer in the form $a x+b$, where a and b are integers. Give also the domain of $g \circ f$.
5. (a) Prove the following two identities

$$
\begin{aligned}
(\sin A+\sin B)^{2}+(\cos A+\cos B)^{2} & \equiv 2(1+\cos (A-B)) \\
(\sin A+\sin B)(\cos A+\cos B) & \equiv \sin (A+B)(1+\cos (A-B))
\end{aligned}
$$

and hence, find $\sin (A+B)$ given that $\sin A+\sin B=\frac{\sqrt{2}}{2}$ and $\cos A+\cos B=\frac{\sqrt{6}}{2}$.
[7 marks]
(b) Solve the equation $3 \sin 2 \theta=\tan 2 \theta$ for $\theta \in(-\pi, \pi]$, giving your answer correct to one decimal place.
[3 marks]
6. (a) Let S_{24} denote the sum of the first 24 terms of the series

$$
\ln x+\ln x^{5}+\ln x^{9}+\ln x^{13}+\cdots
$$

where $x>0$. Find an expression for S_{24}, giving your answer as a single logarithm. Hence, solve the equation

$$
S_{24}=47 \ln \left(\frac{12 x^{12}-5}{4}\right) .
$$

[5 marks]
(b) Let $f(x)=k x^{2}+9 x+k+1$. Given that the graph of $y=f(x)$ cuts the x-axis twice, find the set of possible values of k.
[5 marks]
7. (a) Show that $1+\tan \left(\frac{1}{4} \pi-\phi\right)=\frac{2}{1+\tan \phi}$.
(b) Using the substitution $\theta=\frac{1}{4} \pi-\phi$, show that

$$
\int_{0}^{\frac{1}{4} \pi} \ln (1+\tan \theta) \mathrm{d} \theta=\frac{1}{8} \pi \ln 2 .
$$

[Hint: One can use the fact that $\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x$.]
(c) Using the substitution $x=\tan \theta$, evaluate

$$
\int_{0}^{1} \ln (1+x) \mathrm{d} x .
$$

8. (a) Determine the set of values of x for which $\frac{2 x-3}{x+2}>-1$.
[5 marks]
(b) Show that $2 x-1$ is a factor of $2 x^{3}+7 x^{2}+4 x-4$. Hence, express the following expression into partial fractions

$$
\frac{x^{2}+6}{2 x^{3}+7 x^{2}+4 x-4} .
$$

9. (a) Four red balls and six blue balls are placed in a bag. A person takes out the balls one by one at random and places them on a table in the order in which they are extracted. What is the probability that the first two red balls in the row are next to each other?
(b) (i) Show that if $\mathbf{D}=\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$, where a and b are constants, then $\mathbf{D}^{3}=\left(\begin{array}{cc}a^{3} & 0 \\ 0 & b^{3}\end{array}\right)$.
(ii) Find the inverse of the matrix $\mathbf{P}=\left(\begin{array}{cc}1 & -3 \\ 1 & 1\end{array}\right)$.
(iii) Let $\mathbf{D}=\left(\begin{array}{ll}5 & 0 \\ 0 & 1\end{array}\right)$. Find the matrix \mathbf{A} which satisfies the equation $\mathbf{D}^{3}=\mathbf{P}^{-1} \mathbf{A P}$.
10. (a) By expanding the expression $(x-2)^{3}$, sketch the graph of the curve $y=x^{3}-6 x^{2}+12 x$. Hence, or otherwise, show that the equation $x^{3}-6 x^{2}+11 x=0$ has only one real root.
[5 marks]
(b) Find the locus of the point P such that the sum of its distances from the points A with coordinates $(1,2)$ and B with coordinates $(2,1)$ is 2 .

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE

L-Università ta' Malta

EXAMINATIONS BOARD

ADVANCED MATRICULATION LEVEL

 2022 FIRST SESSION| SUBJECT: | Pure Mathematics |
| :--- | :--- |
| PAPER NUMBER: | II |
| DATE: | $9^{\text {th }}$ May 2022 |
| TIME: | $09: 00$ to $12: 05$ |

Directions to Candidates

Answer SEVEN questions. Each question carries 15 marks.
Graphical calculators are not allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) Solve the first order linear differential equation

$$
\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y \sin x=3, \quad \text { where }-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

given that $y=1$ when $x=0$. Give your answer in the form $y=f(x)$.
(b) Solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}+16 y=24 e^{4 x}
$$

given that $y=-1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-4$ when $x=0$. Give your answer in the form $y=f(x)$. [When finding the particular integral, use $P x^{2} e^{4 x}$ as a trial solution.]
[8 marks]
2. (Note that angles should be taken in radians throughout this question.)
(a) Show that the equation $2 \ln \left(1+\sin ^{2} x\right)=\cos x$ has a solution between 0 and π. Use the Newton-Raphson method to find an approximate value of this solution, taking 1 as a first approximation. Do two iterations and give your working to four decimal places.
[8 marks]
(b) Evaluate the integral $\int_{0}^{1} \sin [\ln (x+1)] \mathrm{d} x$ by Simpson's Rule with an interval width of $h=0.25$. Give your answer to four decimal places.
3. (a) Use the substitution $x=\sin t$ to evaluate $\int_{0}^{1}\left(1-x^{2}\right)^{\frac{3}{2}} \mathrm{~d} x$.
[You may need to use the identity: $8 \cos ^{4} t=3+4 \cos 2 t+\cos 4 t$.]
(b) (i) Express $\frac{1}{1+x}+\frac{1}{1-x}+\frac{2}{1+x^{2}}$ as one fraction.
(ii) Evaluate $\int_{0}^{\frac{1}{2}} \frac{8}{1-x^{4}} \mathrm{~d} x$.
(c) A function y is defined by $y=\frac{x^{4}}{4}+\frac{1}{8 x^{2}}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and show that

$$
1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=\left(x^{3}+\frac{1}{4 x^{3}}\right)^{2}
$$

(ii) The part of the curve of this function y between $x=1$ and $x=2$ is rotated by 2π radians about the x-axis. Find the area of the surface of revolution so formed.
[7 marks]
4. (a) Find the first four derivatives of the function $f(x)=\frac{1}{2 x+1}$.

Hence:
(i) Write down the first five terms of the Maclaurin's series of $f(x)$;
(ii) Find the decimal representation of $\frac{8}{9}$ correct to three decimal places.
(b) (i) Show that

$$
\sum_{r=3}^{n} \ln \left(\frac{r(r-1)}{(r-2)^{2}}\right)=\ln \left(\frac{n(n-1)^{2}}{2}\right)
$$

(ii) Hence, find the sum of the first six terms of the series, giving your answer in terms of $2 \ln a$, for some constant a to be determined.
5. (a) The curve \mathscr{C} has Cartesian equation given by $\left(\sqrt{x^{2}+y^{2}}\right)^{3}=4 x y$.
(i) Write the equation of \mathscr{C} in polar form.
(ii) Sketch the curve \mathscr{C} for $0 \leq \theta \leq \pi$.
(iii) Find the area enclosed by \mathscr{C} for $0 \leq \theta \leq \pi$.
(b) (i) Find $\sum_{r=1}^{n}(r-3)^{3}$.
(ii) Hence, deduce the sum $2^{3}+3^{3}+4^{3}+\cdots+9^{3}$.
6. The point A has position vector $3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$ and the line ℓ_{1} has vector equation

$$
\mathbf{r}=2 \mathbf{i}-\mathbf{j}-4 \mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}-4 \mathbf{k}) .
$$

(a) Find the equation of the plane Π_{1} that passes through A and contains ℓ_{1}.
(b) Find the equation of the plane Π_{2} that passes through A and is perpendicular to ℓ_{1}.
[2 marks]
(c) Find the position vector of the point B where the line ℓ_{1} meets the plane Π_{2}. Hence, or otherwise, find the distance of the point A from the line ℓ_{1}.
[5 marks]
(d) Find the equation of the plane Π_{3} passing through A that is perpendicular to both Π_{1} and Π_{2}.
[4 marks]
7. (a) A complex number z satisfies the equation

$$
|z-1+3 i|=2|z-i| .
$$

Show that the locus of the point on the Argand diagram associated with z describes a circle. Find the radius and the coordinates of the centre of this circle.
(b) Find the three roots of the equation $(2 z+1)^{3}=(z+2 i)^{3}$.
8. (a) Use the principle of mathematical induction to prove that for every integer $n \geq 1$,

$$
\frac{1^{2}}{1 \cdot 3}+\frac{2^{2}}{3 \cdot 5}+\cdots+\frac{n^{2}}{(2 n-1)(2 n+1)}=\frac{n(n+1)}{2(2 n+1)} .
$$

(b) Prove by the principle of mathematical induction that $11^{n}-4^{n}$ is divisible by 7 for every integer $n \geq 1$.
9. Let Π_{1}, Π_{2} and Π_{3} be planes given by the following Cartesian equations, where $k \in \mathbb{R}$.

$$
\begin{array}{lc}
\Pi_{1}: & -2 x+k y+z=-3 \\
\Pi_{2}: & -x+3 y+k z=-1 \\
\Pi_{3}: & x-7 y-5 z=0
\end{array}
$$

(a) Find the range of values of k for which the planes Π_{1}, Π_{2} and Π_{3} meet at exactly one point.
[5 marks]
(b) Assume that $k=2$. Find the Cartesian equation describing the line of intersection of the planes Π_{1}, Π_{2} and Π_{3}.
[5 marks]
(c) Assume that $k=5$. Find the coordinates of the unique point of intersection of the planes Π_{1}, Π_{2} and Π_{3}.
10. The function f is given by $f(x)=\frac{x^{2}+2 x-3}{2 x^{2}-3 x-5}$.
(a) Determine the equations of the vertical and horizontal asymptotes of the curve $y=f(x)$.
[3 marks]
(b) Show that the curve $y=f(x)$ has no stationary points.
(c) Find where the curve $y=f(x)$ cuts the coordinate axes.
(d) On the same diagram, sketch the curve of $y=f(x)$ and $y=\frac{1}{f(x)}$.
[5 marks]
(e) Hence, deduce that the equation $(x+3)(x-1)= \pm(2 x-5)(x+1)$ has two positive real roots and two negative real roots, and mark them on your graph.

