

SUBJECT:	Pure Mathematics
PAPER NUMBER:	I
DATE:	$30^{\text {th }}$ August 2023
TIME:	$09: 00$ to $12: 05$

Directions to Candidates

Answer ALL questions.
Each question carries 10 marks.
Graphical calculators are not allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) Use a suitable substitution to find the integral $\int \frac{\ln x}{x} \mathrm{~d} x$.
(b) Hence, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{e^{-y} \ln x}{x y^{2}},
$$

given that $y=0$ when $x=e$.
2. (a) Let $y=\ln \left(1+\sin \left(x^{2}\right)\right)$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, and show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+2 e^{-y}\left(2 x^{2} \sin \left(x^{2}\right)-\cos \left(x^{2}\right)\right)=0 .
$$

(b) A curve has equation $4 y^{2}-7 x y+3 x^{2}-21=0$. Find the equation of the line that is tangent to the curve at the point $(5,2)$.
3. The points A, B and C have position vectors $5 \mathbf{i}+35 \mathbf{j}+6 \mathbf{k}, 8 \mathbf{i}+\alpha \mathbf{j}$ and $\beta \mathbf{i}-5 \mathbf{j}-4 \mathbf{k}$, respectively.
(a) Find α and β given that A, B and C are collinear.
[4 marks]
(b) The point D has position vector $2 \mathbf{i}+\gamma \mathbf{j}+2 \mathbf{k}$. Find the two possible values of γ given that the angle $B D C$ is a right angle.
(c) Find the area of the triangle $B D C$ for one of the values of γ found in part (b). [3 marks]
4. The point A has coordinates $(2,5)$ and the line ℓ_{1} has equation $2 x+4 y-14=0$.
(a) Find the equation of the line ℓ_{2} passing through A which is parallel to the line ℓ_{1}.
[3 marks]
(b) Find the equation of the line ℓ_{3} passing through A which is perpendicular to the line ℓ_{1}.
[3 marks]
(c) Find the locus of the points which are equidistant from the two lines ℓ_{1} and ℓ_{2}.
[4 marks]
5. (a) Use integration by parts to find the integral $\int e^{2 x} \sin x \mathrm{~d} x$.
[4 marks]
(b) Use the substitution $x=\tan \theta$ to show that:

$$
\int \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\int \cos ^{2} \theta \mathrm{~d} \theta
$$

Hence, evaluate $\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x$.
[6 marks]
6. (a) Express into partial fractions

$$
\frac{x^{2}+3 x-2}{x^{3}-x^{2}+x-1} .
$$

[4 marks]
(b) If α and β are the roots of the quadratic equation

$$
(1+i) z^{2}-2 i z+(4+i)=0,
$$

where $i=\sqrt{-1}$, express $\alpha+\beta$ and $\alpha \beta$ in the form $a+i b$, where a and b are real. Find, in a form not involving α and β, the quadratic equation whose roots are $\alpha+2 \beta$ and $2 \alpha+\beta$.
[6 marks]
7. (a) Show that, if x is small enough for its cube and higher powers to be neglected,

$$
\sqrt{\frac{1-x}{1+x}}=1-x+\frac{x^{2}}{2}
$$

By putting $x=1 / 8$, show that $\sqrt{7} \approx 2 \frac{83}{128}$.
(b) The seventh term of an arithmetic progression is 4 and the second, fifth and eleventh terms are consecutive terms in a geometric progression. Find the first term of the arithmetic progression and also the common difference, assuming it is not zero. What is the common ratio of the geometric progression?
8. (a) The Hawaiian alphabet is made up of the seven consonants h, k, l, m, n, p and w, together with the five vowels a, e, i, o and u. Find how many different five-letter words can be formed by using exactly one vowel and four consonants if:
(i) The letter a must be used in the centre of the word and no letter can be repeated;
(ii) No letter can be repeated;
(iii) Any letter can be repeated any number of times.
(b) Find the values of the constants a, b, c and d such that the matrices \mathbf{P} and \mathbf{Q} given below are the inverse of each other.

$$
\mathbf{P}=\left(\begin{array}{ccc}
a & 2 & -1 \\
2 & 2 & 1 \\
4 & 3 & b
\end{array}\right) \quad \text { and } \quad \mathbf{Q}=\left(\begin{array}{ccc}
-1 & -5 & c \\
2 & d & -7 \\
-2 & -7 & 6
\end{array}\right) .
$$

[4 marks]
9. (a) Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\sqrt[3]{5 x-1}$ and $g(x)=\frac{1}{5}\left(x^{3}+1\right)$.
(i) Determine the composite functions $(f \circ g)(x)$ and $(g \circ f)(x)$.
(ii) Hence, find the inverse functions $f^{-1}(x)$ and $g^{-1}(x)$.
[5 marks]
(b) The function $f:[0, \pi] \rightarrow \mathbb{R}$ is given by $f(x)=3^{\cos x}+\frac{1}{6}$.
(i) Explain why f is injective (i.e. $1-1$-function).
(ii) Find the range of f, i.e. $\operatorname{ran}(f)$.
(iii) Find the inverse function $f^{-1}: \operatorname{ran}(f) \rightarrow[0, \pi]$.
[5 marks]
10. (a) Express $4 \cos \theta-3 \sin \theta$ in the form $R \cos (\theta+\phi)$, where $R>0$ and $\phi \in[0,2 \pi]$, giving the exact value of R and the value of ϕ correct to 3 decimal places. Hence, solve the equation $4 \cos \theta-3 \sin \theta=1$ for $\theta \in[0,2 \pi]$. Give your answer correct to 3 decimal places. [5 marks]
(b) If the expression $a x^{4}+b x^{3}-x^{2}+2 x+3$ leaves remainder $\sqrt{3} x+5$ when it is divided by $x^{2}-x-2$, find the values of a and b. Give your answer in surd form.
[5 marks]

SUBJECT:	Pure Mathematics
PAPER NUMBER:	II
DATE:	$31^{\text {st }}$ August 2023
TIME:	$09: 00$ to $12: 05$

Directions to Candidates

Answer SEVEN questions. Each question carries 15 marks.
Graphical calculators are not allowed however scientific calculators can be used but all necessary working must be shown.

1. (a) Solve the first order linear differential equation

$$
(x-1) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=(x-1) e^{-x}
$$

given that $y=1$ when $x=0$. Give your answer in the form $y=f(x)$.
[7 marks]
(b) Solve the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=12 x^{2}+4 x,
$$

given that $y=\frac{3}{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$. Give your answer in the form $y=f(x)$.
2. (Note that angles should be taken in radians throughout this question.)
(a) Show that the equation $e^{2 x} \cos 5 x=x^{4}+5 x^{2}-3$ has a solution between 0 and 1 . Use the Newton-Raphson method to find an approximate value of this solution, taking 0.5 as a first approximation. Do two iterations and give your working to four decimal places.
[8 marks]
(b) Evaluate $\int_{0}^{1} \sin \left(x^{3}-x+1\right) \mathrm{d} x$ by Simpson's Rule with an interval width of $h=0.25$. Give your answer to four decimal places.
3. (a) By reducing to echelon form, or otherwise, solve the equation

$$
\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 6 & -11 \\
1 & -2 & 7
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) .
$$

[5 marks]
(b) Let $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. The TracE of a square matrix \mathbf{X}, denoted by $\operatorname{tr}[\mathbf{X}]$, is defined to be the sum of the entries on the leading diagonal (the diagonal from the upper left to the lower right entries) of \mathbf{X}. For example, for the above 2×2 matrix \mathbf{A}, one has $\operatorname{tr}[\mathbf{A}]=a+d$.
(i) Find $\operatorname{det}[\mathbf{A}], \operatorname{tr}\left[\mathbf{A}^{2}\right]$ and $\operatorname{det}\left[\mathbf{A}^{2}\right]$ in terms of a, b, c and d.
(ii) Verify that $\operatorname{det}\left[\mathbf{A}^{2}\right]=(\operatorname{det}[\mathbf{A}])^{2}$ and $\operatorname{tr}\left[\mathbf{A}^{2}\right]=(\operatorname{tr}[\mathbf{A}])^{2}-2 \operatorname{det}[\mathbf{A}]$.
(iii) Show that $\mathbf{A}^{2}-(\operatorname{tr}[\mathbf{A}]) \mathbf{A}+(\operatorname{det}[\mathbf{A}]) \mathbf{I}=\mathbf{0}$, where \mathbf{I} is the 2×2-identity matrix and $\mathbf{0}$ is the 2×2-zero matrix. Hence, or otherwise, find \mathbf{A} when $\mathbf{A}^{2}=\left(\begin{array}{cc}1 & 18 \\ -6 & 13\end{array}\right)$.
[10 marks]
4. (a) (i) Find the two square roots of $3-4 i$, giving your answer in the form $x+i y$, where $x, y \in \mathbb{R}$ and $i=\sqrt{-1}$.
(ii) Draw these on an Argand diagram, labelling the points A and B.
(iii) Find two possible points C_{1} and C_{2} such that triangles $A B C_{1}$ and $A B C_{2}$ are equilateral.
[8 marks]
(b) Use de Moivre's Theorem to show that

$$
\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta} .
$$

Hence, by substituting $t=\tan \theta$, solve the equation $t^{4}+4 t^{3}-6 t^{2}-4 t+1=0$, giving your answer correct to three decimal places.
[7 marks]
5. (a) (i) How many subsets of the set of integers $\{1,2, \ldots, 8\}$ can be formed (include also the empty set and the whole set itself)?
(ii) How many of these subsets do not contain two consecutive integers?
(iii) If one of the subsets is chosen at random, what is the probability that it contains two successive integers?
[12 marks]
(b) If the two events A and B are independent, show that:

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B) .
$$

6. (a) (i) Let $I_{n}=\int \frac{x^{n}}{\sqrt{1+x}} \mathrm{~d} x$. Show that, for $n \geq 1$,

$$
(2 n+1) I_{n}=2 x^{n} \sqrt{1+x}-2 n I_{n-1}
$$

(ii) Evaluate I_{0}, I_{1} and I_{2}.
(iii) The region bounded by the curve $y=\frac{x^{3 / 2}}{(1+x)^{1 / 4}}$ and the x-axis between $x=0$ and $x=3$ is rotated through 2π radians about the x-axis. Find the volume of the solid that is generated by this rotation.
(b) A water trough in a farm is shaped like a triangular prism. It is 3 meters long and its cross section is an equilateral triangle (see diagram, where y is the height of the water in the trough). The trough is filling up at a rate of $6 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

Find the rate of change of the surface area of the water in contact with the air, when the depth of the water in the trough is 20 cm .
[6 marks]
7. Let $f(\theta)=\frac{3 \cos \theta}{\cos 2 \theta}$ for $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$, and let the curve \mathscr{C}_{1} have polar equation $r=f(\theta)$.
(a) Which are the values of θ in the given domain for which $f(\theta)$ is not defined?
(b) Obtain the Cartesian equation of the curve \mathscr{C}_{1}.
(c) Hence, sketch the curve \mathscr{C}_{1}, showing clearly any asymptotes.
(d) The curve \mathscr{C}_{2} has polar equation $r=3 \cos \theta$ for $0 \leq \theta \leq \pi$. Find the polar coordinates of the common point on the curves \mathscr{C}_{1} and \mathscr{C}_{2}.
8. (a) Let $f(x)=e^{x} \sin x$.
(i) Show that $f^{\prime \prime}(x)=2\left(f^{\prime}(x)-f(x)\right)$.
(ii) Hence, or otherwise, find the Maclaurin series for $f(x)$, up to and including, the term in x^{5}.
(b) Use the principle of mathematical induction to prove that for every integer $n \geq 1$,

$$
1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)^{3}+\cdots+n\left(\frac{1}{2}\right)^{n-1}=4-\frac{n+2}{2^{n-1}}
$$

9. The function f is given by $f(x)=\frac{x^{2}-3 x-4}{2 x^{2}+7 x+3}$.
(a) Find where the curve $y=f(x)$ cuts the coordinate axes.
(b) Show that the curve $y=f(x)$ does not have any stationary points.
(c) Determine the equations of the horizontal and vertical asymptotes of the curve $y=f(x)$.
(d) Find where the curve cuts the line representing the horizontal asymptote.
(e) Sketch the curve of $y=f(x)$ and hence, sketch also the curve of $y=|f(x)|$.
10. The lines ℓ_{1} and ℓ_{2} have vector equations

$$
\begin{aligned}
& \mathbf{r}_{1}=3 \mathbf{i}-11 \mathbf{j}-10 \mathbf{k}+\lambda(\mathbf{i}-7 \mathbf{j}-9 \mathbf{k}), \text { and } \\
& \mathbf{r}_{2}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{j}+\mathbf{k}),
\end{aligned}
$$

respectively.
(a) Show that the lines intersect. Find the position vector of their point of intersection A, and the equation of the plane Π_{1} in which they both lie.
[5 marks]
(b) The line ℓ_{3} has vector equation

$$
\mathbf{r}_{3}=2 \mathbf{i}+6 \mathbf{j}+19 \mathbf{k}+v(\mathbf{i}+3 \mathbf{j}+11 \mathbf{k})
$$

Show that ℓ_{3} also lies in Π_{1}.
(c) The point B has position vector $3 \mathbf{i}+\mathbf{j}+8 \mathbf{k}$. Verify that B does not lie in the plane Π_{1}, and find the equation of the plane Π_{2} containing B and ℓ_{1}. Find the acute angle between the planes Π_{1} and Π_{2}.

