

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

INTERMEDIATE MATRICULATION LEVEL 2022 FIRST SESSION

SUBJECT:	Pure Mathematics
DATE:	7 th May 2022
TIME:	9:00 a.m. to 12:05 p.m.

Directions to Candidates

Answer **ALL** questions. There are **10** questions in all. The total number of marks for all the questions in the paper is 100. Graphical calculators are **not** allowed. Scientific calculators can be used, but all necessary working must be shown. A booklet with mathematical formulae is provided.

1. Express

$$f(x) = \frac{3x^2 - 14x + 22}{(x-5)(x-2)^2}$$

into partial fractions and show that:

$$\int_{10}^{15} f(x) \mathrm{d}x = \ln 8 - \frac{5}{52}.$$

[Total: 8 marks]

2. (a) Solve the equation $25^{x} - 9 \times 5^{x} + 20 = 0$.

[3 marks]

(b) Find the exact solution of the equation $2^{3x-4} \times 5^{2x-5} = 100^{x-2}$, giving your answer in the form $\frac{\ln p}{\ln q}$ where *p* and *q* are integers.

[4 marks]

(c) In a physics experiment, Nick measured how the force, *F*, exerted by a spring depends on its extension, *x*. He then plotted the values $A = \ln F$ and $B = \ln x$ on a graph, with *B* on the horizontal axis and *A* on the vertical axis. The graph he obtained was a straight line, passing through the points (2, 4.5) and (4, 7.2). Find *F* when x = 2.5.

[5 marks]

[Total: 12 marks]

3. (a) Write the expression $4x^2-10x-9$ in the form $a(x+h)^2+k$ and hence find the exact solution of the equation $4x^2-10x-9=0$, giving your answer in surd form.

[4 marks]

(b) The coefficient of x^2 in the expansion of $(1 + ax)^n$ is 54 and the coefficient of x is 12. Find the values of a and n.

[4 marks]

(c) An arithmetic progression consists of 100 terms. The third term is -26 and the tenth term is 58. Find the first term, the common difference and the sum of the terms of the progression.
 [4 marks]

[Total: 12 marks]

4. (a) Given that the area of the shaded region in the following diagram is 20.55 cm^2 , show that $\theta - \sin \theta = 0.411$.

[3 marks]

(b) Draw the graphs $y = \cos x$ and $y = \sin x$ for $0 \le x \le 2\pi$. On the graphs indicate clearly the parts where *x* is obtuse.

[3 marks]

(c) Let *x* be an obtuse angle and let $k = \sin x$. Find $\cos x$ in terms of *k*. Hence, or otherwise, solve the following equation.

$$\sin x - \sqrt{3}\cos x = \sqrt{3}$$

[4 marks]

[Total: 10 marks]

5. Show that:

$$\frac{4x^2+2x-9}{2x+3}=2x-2-\frac{3}{2x+3},$$

and solve the differential equation

$$(2x+3)\frac{\mathrm{d}y}{\mathrm{d}x} = y(4x^2+2x-9),$$

given that y = 1 when x = -1. In your answer express y as a function of x.

[Total: 6 marks]

- 6. Differentiate the following functions with respect to x. (a) $f(x) = 3\cos^3 x + 2x$ (b) $g(x) = x^4 e^{3x}$ (c) $h(x) = \frac{x^2 + 5x}{\ln x}$ [2, 3, 3 marks] [Total: 8 marks]
- 7. The line ℓ₁ has equation y = -2x + 6. The line ℓ₂ passes through A(5,6) and is perpendicular to ℓ₁.
 (a) Find the equation of ℓ₂.
 - [2 marks] (b) Find the coordinates of the point *B* where ℓ_1 and ℓ_2 intersect. [2 marks] (c) Find the distance *AB*, giving your answer in the simplest surd form. [2 marks] (d) Let *R* denote the *x*-intercept of ℓ_1 . Show that triangle *ABR* is isosceles and find its area. [4 marks] [Total: 10 marks]
- 8. (a) For the curve $y = x^3 + 6x^2 + 9x$ find the coordinates of the minimum and maximum turning points and distinguish between them.

[6 marks]

(b) On the same set of axes, sketch the graphs of the curve $y = x^3 + 6x^2 + 9x$ and the line y = x, showing clearly the coordinates of the points where the two graphs intersect.

[4 marks]

(c) Hence, find the area enclosed between the curve and the line.

[4 marks]

[Total: 14 marks]

- 9. A group of 7 athletes consists of 3 girls: Amy, Beth and Caroline, and 4 boys: Daniel, Emanuel, Franco and George.
 - (a) The 7 athletes are to be seated next to each other on a bench.
 - (i) In how many ways can the athletes be seated?
 - (ii) In how many ways can the athletes be seated if Franco must sit in the middle?
 - (iii) In how many ways can the athletes be seated if the girls must sit next to each other?

[1, 2, 2 marks]

- (b) 4 of the 7 athletes are to be chosen to participate in a competition.
 - (i) In how many ways can this be done?

If the athletes are chosen at random, what is the probability that:

- (ii) they are **all** boys?
- (iii) there are more boys than girls?

[1, 2, 2 marks] [**Total: 10 marks**]

10. (a) Let
$$\mathbf{P} = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 4 \\ 5 & 6 & 6 \end{pmatrix}$$
 and $\mathbf{Q} = \begin{pmatrix} -18 & 6 & 5 \\ 26 & -9 & -7 \\ -11 & 4 & 3 \end{pmatrix}$.

- (i) Find **PQ**.
- (ii) What do you deduce about the matrices **P** and **Q**?
- (iii) Use your result to solve the following equations.

[1, 1, 3 marks]

- (b) The 2 × 2 matrix **A** represents a reflection in the line y = x. The 2 × 2 matrix **B** represents an anticlockwise rotation by 90° about the origin.
 - (i) Find the transformation matrices **A** and **B**.
 - (ii) Give a geometric description of the transformation represented by the matrices A^2 , B^3 and AB.

[2, 3 marks] [Total: 10 marks]