SUBJECT:
DATE:
TIME:

Pure Mathematics
$2^{\text {nd }}$ September 2022
4:00 p.m. to 7:05 p.m.

Directions to Candidates

Answer ALL questions. There are $\mathbf{1 0}$ questions in all.
The total number of marks for all the questions in the paper is 100 .
Graphical calculators are not allowed.
Scientific calculators can be used, but all necessary working must be shown.
A booklet with mathematical formulae is provided.

1. Let $f(x)=2 x^{3}+x^{2}-5 x+2$.
(a) Show that $(x-1)$ and $(2 x-1)$ are factors of $f(x)$ and find the other factor of $f(x)$.
[3 marks]
(b) Express

$$
\frac{3 x^{2}-8 x+2}{2 x^{3}+x^{2}-5 x+2}
$$

into partial fractions and show that

$$
\int_{2}^{5} \frac{3 x^{2}-8 x+2}{2 x^{3}+x^{2}-5 x+2} \mathrm{~d} x=\ln \left(\frac{49 \sqrt{3}}{64}\right) .
$$

2. (a) Sketch the arc of the curve $y=2 x-x^{2}$ for which y is positive and find the area of the region which lies between this arc and the x-axis.
(b) The base of a triangle is half its perpendicular height. If the base is increasing at the rate of $5 \mathrm{~cm} / \mathrm{s}$, find the rate of change of the area of the triangle when the base is 10 cm .
3. (a) Find the set of values of $x \in \mathbb{R}$ for which $\frac{x+1}{3 x+1}>1$.
[4 marks]
(b) If α and β are the roots of the quadratic equation $2 x^{2}-3 x-1=0$, find the quadratic equation whose roots are $\alpha^{2}+\alpha$ and $\beta^{2}+\beta$.
[Total: 8 marks]
4. (a) $x, 17-x$ and $2 x-1$ are three consecutive terms of an arithmetic progression. Find x.
(b) $y, y+3$ and $5 y-3$ are three consecutive terms of a geometric progression. Find the value of y, given that it is an integer.
[Total: 5 marks]
5. Let $f(x)=1-2 \sin ^{2} x$ where $-\pi \leq x \leq \pi$.
(a) Solve the equation $f(x)=0$.
[2 marks]
(b) Using differentiation, find the stationary points of the curve $y=f(x)$ and determine their nature.
[4, 3 marks]
(c) Draw a sketch of $y=f(x)$, showing clearly the stationary points and the points where the curve cuts the coordinate axes.
[Total: 12 marks]
6. (a) Let $f(x)=\ln \left(x^{2}-6 x+10\right)$. Find the coordinates of the point on the graph $y=f(x)$ at which the tangent has slope equal to 1 .
(b) Let $u=(2 x-3)^{10}$. Determine the coefficient of x^{3} in the expansion of $\frac{\mathrm{d} u}{\mathrm{~d} x}$.
[4 marks]
(c) Let $g(x)=\left(x^{2}+3\right) e^{2 x+3}$. Show that the function $g(x)$ has no stationary points.
[4 marks]
[Total: 12 marks]
7. (a) Let $y=t e^{-t}$. Find $\frac{d y}{d t}$ and hence deduce that
(Eq. 1)

$$
\int t e^{-t} \mathrm{~d} t=-t e^{-t}-e^{-t}+C
$$

where C is a constant.
(b) An experiment was conducted to see how the number P of organisms in a population changes over time. The rate of change of P was found to satisfy the differential equation
(Eq. 2)

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=(7-t)\left(10^{5} e^{-t}+t^{2}+1\right)
$$

where t is the time measured in seconds.
(i) Show that the population reaches a maximum when $t=7 \mathrm{~s}$.
(ii) Given that $P=10^{6}$ when $t=0 \mathrm{~s}$, show that when $t=7 \mathrm{~s}$ the population reaches 1600315.
(Note that when integrating the right-hand side of (Eq. 2), you can make use of the integral given in (Eq. 1).)
[Total: 12 marks]
8. The matrix $T=\left(\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right)$ represents a transformation in the $x y$-plane. The line ℓ has equation $y-2 x-6=0$.
(a) Sketch the line ℓ, marking clearly its intercepts.
[2 marks]
(b) The matrix T transforms the line ℓ into another line ℓ^{\prime}. By considering the images of the intercepts of ℓ, find the equation of its image ℓ^{\prime}.
(c) T maps the point $P(a, b)$ into the point $(1,2)$. Find a and b.
[Total: 10 marks]
9. The line ℓ_{1} passes through the points $A(1,1)$ and $B(5,13)$. The line ℓ_{2} has equation $y=-x+6$.
(a) Find the equation of ℓ_{1}.
(b) (i) Find the coordinates of the point X where ℓ_{1} and ℓ_{2} intersect.
(ii) Draw a diagram to show the lines ℓ_{1}, ℓ_{2} and the point X.
(c) Show that the lines ℓ_{1} and ℓ_{2} are not perpendicular.
(d) Verify that the points $Q(-1,7)$ and $R(3,3)$ lie on ℓ_{2} and that the line $A R$ is perpendicular to ℓ_{2}.
(e) Hence, or otherwise, find the distance of the point A from ℓ_{2} leaving your answer in the simplest surd form.
(f) Find the area of triangle $Q X A$.
10. (a) In a room there are twelve workers; five are Maltese, four are Italian and three are English. Five workers are to be chosen to participate in some group-work. In how many ways can this be done if:
(i) any five workers are to be chosen?
(ii) no Italian worker is to be chosen?
[2 marks]
(iii) the oldest two workers are to be chosen? (Assume that none of the workers have the same age.)
(b) The letters of the word INSTAGRAM are arranged randomly in a row.
(i) How many different arrangements are possible?
[2 marks]
(ii) What is the probability that the arrangement has the vowels next to each other?

