

MATRICULATION AND SECONDARY EDUCATION CERTIFICATE EXAMINATIONS BOARD

INTERMEDIATE MATRICULATION LEVEL 2022 SECOND SESSION

SUBJECT:	Pure Mathematics	
DATE:	2 nd September 2022	
TIME:	4:00 p.m. to 7:05 p.m.	
TIME:	4:00 p.m. to 7:05 p.m.	

Directions to Candidates

Answer **ALL** questions. There are **10** questions in all. The total number of marks for all the questions in the paper is 100. Graphical calculators are **not** allowed. Scientific calculators can be used, but all necessary working must be shown. A booklet with mathematical formulae is provided.

- 1. Let $f(x) = 2x^3 + x^2 5x + 2$.
 - (a) Show that (x-1) and (2x-1) are factors of f(x) and find the other factor of f(x).
 - (b) Express

$$\frac{3x^2 - 8x + 2}{2x^3 + x^2 - 5x + 2}$$

into partial fractions and show that

$$\int_{2}^{5} \frac{3x^2 - 8x + 2}{2x^3 + x^2 - 5x + 2} \, \mathrm{d}x = \ln\left(\frac{49\sqrt{3}}{64}\right).$$

[4, 3 marks]

[3 marks]

[Total: 10 marks]

2. (a) Sketch the arc of the curve $y = 2x - x^2$ for which *y* is positive and find the area of the region which lies between this arc and the *x*-axis.

[3 marks]

(b) The base of a triangle is half its perpendicular height. If the base is increasing at the rate of 5 cm/s, find the rate of change of the area of the triangle when the base is 10 cm.

[3 marks]

[Total: 6 marks]

- 3. (a) Find the set of values of $x \in \mathbb{R}$ for which $\frac{x+1}{3x+1} > 1$.
 - (b) If α and β are the roots of the quadratic equation 2x²-3x-1 = 0, find the quadratic equation whose roots are α² + α and β² + β.

[4 marks]

[Total: 8 marks]

4. (a) x, 17 - x and 2x - 1 are three consecutive terms of an arithmetic progression. Find x.

(b) *y*, *y* + 3 and 5*y* - 3 are three consecutive terms of a geometric progression. Find the value of *y*, given that it is an integer.

[3 marks]

[Total: 5 marks]

5. Let $f(x) = 1 - 2\sin^2 x$ where $-\pi \le x \le \pi$. (a) Solve the equation f(x) = 0.

[2 marks]

- (b) Using differentiation, find the stationary points of the curve y = f(x) and determine their nature.
- [4, 3 marks]
 (c) Draw a sketch of y = f(x), showing clearly the stationary points and the points where the curve cuts the coordinate axes.

[3 marks]

[Total: 12 marks]

6. (a) Let $f(x) = \ln(x^2 - 6x + 10)$. Find the coordinates of the point on the graph y = f(x) at which the tangent has slope equal to 1.

[4 marks]

(b) Let $u = (2x-3)^{10}$. Determine the coefficient of x^3 in the expansion of $\frac{du}{dx}$.

[4 marks]

(c) Let $g(x) = (x^2 + 3)e^{2x+3}$. Show that the function g(x) has **no** stationary points.

[4 marks]

[Total: 12 marks]

7. (a) Let $y = t e^{-t}$. Find $\frac{dy}{dt}$ and hence deduce that

(Eq. 1)
$$\int t e^{-t} dt = -t e^{-t} - e^{-t} + C,$$

where *C* is a constant.

[3 marks]

(b) An experiment was conducted to see how the number P of organisms in a population changes over time. The rate of change of P was found to satisfy the differential equation

(Eq. 2)
$$\frac{\mathrm{d}P}{\mathrm{d}t} = (7-t)(10^5 e^{-t} + t^2 + 1),$$

where *t* is the time measured in seconds.

- (i) Show that the population reaches a maximum when t = 7s.
- [2 marks]
 (ii) Given that P = 10⁶ when t = 0s, show that when t = 7s the population reaches 1600315.
 (Note that when integrating the right-hand side of (Eq. 2), you can make use of the integral given in (Eq. 1).)

[7 marks]

[Total: 12 marks]

- 8. The matrix $T = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$ represents a transformation in the *x y*-plane. The line ℓ has equation y 2x 6 = 0.
 - (a) Sketch the line ℓ , marking clearly its intercepts.
 - (b) The matrix *T* transforms the line ℓ into another line ℓ' . By considering the images of the intercepts of ℓ , find the equation of its image ℓ' .

[5 marks]

[2 marks]

(c) *T* maps the point P(a, b) into the point (1,2). Find *a* and *b*.

[3 marks]

[Total: 10 marks]

9. The li (a) Fi	ine ℓ_1 passes through the points $A(1, 1)$ and $B(5, 13)$. The line ℓ_2 has equation y ind the equation of ℓ_1 .	=-x+6.
(4) 11		[2 marks]
(b)	(i) Find the coordinates of the point <i>X</i> where ℓ_1 and ℓ_2 intersect.	[) morkel
((ii) Draw a diagram to show the lines ℓ_1, ℓ_2 and the point X.	
		[2 marks]
(c) SI	how that the lines ℓ_1 and ℓ_2 are not perpendicular.	[1 marke]
(d) V_{ℓ_2}	Therefore the points $Q(-1,7)$ and $R(3,3)$ lie on ℓ_2 and that the line AR is perpendent of ℓ_2 .	dicular to
(e) H	Ince, or otherwise, find the distance of the point A from ℓ_2 leaving your answer the point A from ℓ_2 leaving your answer.	[2 marks] wer in the
SI	implest surd form.	[2 marks]
(f) Fi	ind the area of triangle QXA .	
		[4 marks]
	[Total:]	15 marks]
10. (a) Ir Fi th	n a room there are twelve workers; five are Maltese, four are Italian and three ar ive workers are to be chosen to participate in some group-work. In how many nis be done if:	e English. ways can
	(i) any five workers are to be chosen?	
	(ii) no Italian worker is to be chosen?	[1 marks]
([2 marks]
(i	iii) the oldest two workers are to be chosen? (Assume that none of the workers	s have the
	sume age.)	
		[2 marks]
(b) T	he letters of the word INSTAGRAM are arranged randomly in a row.	[2 marks]
(b) T	he letters of the word INSTAGRAM are arranged randomly in a row. (i) How many different arrangements are possible?	[2 marks]

[3 marks]

[Total: 10 marks]