Question 1.

Three stages of a construction to produce a tile design are given below.
Construct the tile design by following these steps:
a. shade in grayscale or colour, the tile design in stage iii;
b. using centre O, draw a circle R60 and construct a regular hexagon;
c. using a geometrical method, divide base $A B$ into 3 equal parts;
d. draw the grid lines inside the hexagon parallel to the hexagon sides; (2) draw the tile design on the grid.
(Total: 12 m

(i)

(ii)

(iii)

Question 2

Three orthogaphic views of a child toy cube are given below. The cube has three recesses in which a square, a triangular and a circular shape fit in. Draw the toy in cabinet oblique using the given starter lines. The cube's dimensions are $80 \times 80 \times 80 \mathrm{~mm}$ and the shapes' recesses are all 10 mm

END ELEVATION

Question 4.

An illustration of a cast support bracket is given below．
The plan and the profile of the front elevation are also given．
a．In the space provided，complete a sectional front elevation on the cutting plane $\mathrm{L}-\mathrm{L}$ ．
Insert TWO radial and TWO linear dimensions in the orthographic views．

Notes：
－Show all centre lines．
－Do not show hidden details．

\qquad

Question 5.

The plan，the incomplete front and the incomplete development of a hollow cylindrical puppet toy are given．

Using the given starting lines and dimensions：
a．complete the top part of the development；
b．complete the bottom part of the front elevation；
c．shade lightly the development and the front elevation according to the design．（4）
（Total： 18 marks）

\qquad

Question 6.

Three orthographic views and a pictorial view of an observation deck are given Using the given starting lines and VP1，draw an estimated single－point perspective view of the deck．

Notes：

－Two additional vanishing points，VP2 and VP3，may be used to complete the shaded panels A and B ．
－The first four tiles and the two sides are given．
－Ignore wall thickness．
（Total： $\mathbf{2 0}$ marks）

OBSERVATION DECK

\qquad

Question 1.

The following computer programme is written to create a sewing pattern

DATA: $A=50 ; \quad B=100 ; \quad C=150 ; \quad D=200 ; \quad E=250 ; \quad F=300 ; \quad G=350 ;$
$H=400 ; ~ I=450 ; ~ J=500 ; ~ K=550 ; ~ L=600 ; ~ M=650 ; ~ N=700 ;$
$\mathrm{O}=750 ; \quad \mathrm{P}=800$.

ACI 1: MOVE I,H; DRAW I,L; DRAW K,L:
ACI 1: MOVE L,L; DRAW N,L; DRAW N,O; DRAW O,O; DRAW O,K; DRAW L,K: ACI 1: MOVE K,K; DRAW J,K; DRAW J,H:
ACI 5: MOVE H,I; DRAW I,I:
ACI 5: MOVE J,I; DRAW L,I; DRAW L,O; DRAW I,O; DRAW I,N; DRAW K,N DRAW K,J; DRAW J,J:
ACI 5: MOVE I,J; DRAW H,J:
ACI 7: MOVE N,H; DRAW N,J; DRAW O,J; DRAW O,H.

The DATA statement specifies the numeric values (in pixels) of given variables. MOVE, positions the cursor at a new location without drawing a line. DRAW draws a line from a current location to a new location. The instruction ACI No. makes the images that follow the instruction, appear in the colour associated with the number. The computer responds to the following colour commands:

COLOUR	RED	BLUE	BLACK
ACI No.	1	5	7

The starter sheet shows a pre-printed grid representing an 800×800 graphical display. Complete the programme by:
a. using the grid to plot the image produced by this programme;
b. MIRRORING the plotted design, using the vertical and horizontal centre lines as the mirror lines (lines of symmetry).
(4)

Note: Do not colour in the pattern.

\qquad

Question 4.
The management of a family park needs to design some graphic symbols．
The sketches and final symbol for a＇Picnic area＇has been given．
Using the indicated spaces：
a．draw TWO or more sketches and ONE final symbol for＇Public toilet＇；（5）
b．draw TWO or more sketches and ONE final symbol for＇Toddlers area＇；（5）
c．shade lightly both final symbols．

Sketches

Sketches

Sketches
（Total： 12 marks）

Picnic area

Public toilet

Toddlers area

Question 5.

A front elevation and plan of two playground wayfinding signs attached to a pole are given below．

Using the given starting lines and dimensions：
a．find the true lengths of the sides $A B, B C, D E$ and $E F$ ；
b．draw the true shapes of both signs．

（Total： $\mathbf{1 2}$ marks）

Question 6.

An exploded view of a toy windmill is shown on the right. Detail drawings of the separate parts and a parts list are given below. Use the given starting lines to draw: (a) front elevation and (b) plan of the assembled windmill.

Note: Show hidden details.

PARTS LIST		
ITEM	QTY	DESCRIPTION
1	1	OCTAGONAL PYRAMID
2	1	OCTAGONAL PRISM
3	1	WINDMILL BLADES
4	1	OCTAGONAL FRUSTRUM

ITEM 1

(Total: 18 marks)

ITEM 2

ITEM 4

FRONT ELEVATION

(exploded view of the toy windmill)

Question 7.

A pictorial projection of a corner cabinet is shown below. The plan and the auxiliary elevation, as seen from the direction of arrow A, on line $X_{1}-Y_{1}$ are given. Complete the front elevation on line $X-Y$.

Question 1.

The following computer programme is written to create a tile pattern.

DATA: $A=50 ; \quad B=100 ; \quad C=150 ; \quad D=200 ; \quad E=250 ; \quad F=300 ; \quad G=350$
$H=400 ; ~ I=450 ; ~ J=500 ; ~ K=550 ; ~ L=600 ; ~ M=650 ; ~ N=700 ;$

$$
O=750 ; \quad P=800
$$

ACI 1: MOVE N,A; DRAW O,B:
ACI 1: MOVE L,A; DRAW M,B; DRAW M,C; DRAW N,C; DRAW O,D:
ACI 5: MOVE I,A; DRAW I,I; DRAW G,I; DRAW G,G; DRAW I,G:
ACI 5: MOVE J,A; DRAW J,J; DRAW F,J; DRAW F,F; DRAW I,F:
ACI 5: MOVE J,G; DRAW O,G:
ACI 5: MOVE J,F; DRAW O,F:
ACI 7: MOVE A,J; DRAW D,J; DRAW D,L; DRAW F,L; DRAW F,O:
ACI 7: MOVE A,K; DRAW C,K; DRAW C,M; DRAW E,M; DRAW E,O:
ACI 7: MOVE A,A; DRAW A,O; DRAW O,O; DRAW O,A; DRAW A,A.

The DATA statement specifies the numeric values (in pixels) of given variables. MOVE, positions the cursor at a new location without drawing a line. DRAW draws a line from a current location to a new location. The instruction ACI No. makes the images that follow the instruction, appear in the colour associated with the number. The computer responds to the following colour commands:

COLOUR	RED	BLUE	BLACK
ACI No.	1	5	7

The starter sheet shows a pre-printed grid representing an 800×800 graphical display. Complete the programme by:
a. using the grid to plot the image produced by this programme;
b. sketch, in the spaces below, a pattern made up of 4 tiles.
(2)

Note: Do not colour in the pattern.

(Total: 10 marks)

Question 4.
The management of a family park needs to design some graphic symbols.
The sketches and final symbol for a 'Picnic area' has been given.
Using the indicated spaces:
a. draw ONE or more sketches and ONE final symbol for 'Football pitch';
b. draw ONE or more sketches and ONE final symbol for 'Food kiosk';
c. shade lightly both final symbols.
b. draw ONE or more sketches and ONE final symbol for 'Food kiosk';

Sketches

Sketches

Sketches

Question 5.

A front elevation and plan of a playground wayfinding sign attached to a pole is given below.
Using the given starting lines and dimensions:
a. find the true lengths of the sides $A B$ and $B C$;
b. draw the true shapes of the sign.

Picnic area

Football pitch

Food kiosk

Question 6.

An exploded view of a toy windmill is shown on the right．Detail drawings of the separate parts and a parts list are given below．Use the given starting lines to draw：（a）front elevation and （b）plan of the assembled windmill．

Note：Show hidden details．

PARTS LIST		
ITEM	QTY	DESCRIPTION
1	1	CONE
2	1	CYLINDER
3	1	WINDMILL BLADES
4	1	FRUSTRUM

ITEM 1

ITEM 3
（Total： $\mathbf{1 8}$ marks）

$\varnothing 10 \times 10$ deep

ITEM 2

ITEM 4

FRONT ELEVATION

（exploded view of the toy windmill）

Question 7.

A pictorial projection of a corner cabinet is shown below. The plan and the auxiliary elevation, as seen from the direction of arrow A, on line $X_{1}-Y_{1}$ are given. Complete the front elevation on line $X-Y$. The first two steps have been given.

(Total: 18 marks)

