Question 1.

Three stages of a construction to produce a geometric design are given below
Construct the tile design by following these steps:
a. inscribe an octagon and draw THREE circles having R50, R20 and R10;
b. draw the construction lines and TWO other circles having R42 and R38,

(Total: 14 marks)

(a)

(b)

(c)

Question
The profile of a medieval shield is shown on the right. Construct the profile using the instructions given below.

You are requested to:
a. draw arc OA having centre O;
b. find, by construction, centre G of arc AB R50;
find, by construction, centre G of arc AB R50; (1)
find, by construction, centre H of arc BCD using the three point rew arc ED
draw arc ED having centre E;
construct the tangent from F to arc ED;
f. finish off the profile by mirroring the design to the left.

(Total: 14 marks)
(Tots)
ϕ

Quetion 3

A help line icon is shown on the right. The icon consists of a telephone symbol and a speech bubble containing the word 'Help!'. The outline of the telephone symbol consists of lines and tangential arcs The outline of the speech bubble consists of a part ellipse, a tangent at point T, and an arc tangentia to the ellipse at the intersection with the minor axis.

A dimensioned drawing of the icon is given below. You are requested to
a. construct the speech bubble;

(Total: $\mathbf{2 0}$ marks)

- A, B, C, and D are centres of R10 arcs
E is the centre of the R150 arc.
- The telephone icon is symmetrical about the vertical axis.
T is the point of tangency on the ellipse.
- F is the centre of the R10 arc.
- Points of tangencies are denoted by means of
short dashes as shown.

${ }_{\mathrm{E}}{ }^{\text {® }}$
b. construct a one-piece full surface development of the pan which must include the sides and the top of the truncated rectangular pyramid. (12)

Note: Do not draw the handle.
ustion 5
A pictorial view of a cast bearing plate is given on the right. The plan, the end elevation and the profile of the sectional front elevation are also given.
a. In the space provided, complete the sectional front elevation of the bearing plate on cutting plane M-M
b. Insert ONE radial and ONE linear dimension on the orthographic views

Notes:

- Show all centre lines
- Do not show hidden detail

Tur

Two orthographic views and one pictorial projection of a royal throne room are given．Using the given starting lines and VP，draw an estimated one－point perspective view of the throne，including the platform，carpet and surrounding tiles．

Notes：
－VP and some starting lines have been given．
－Estimate any missing dimension．

Question 1

The following computer programme is written to create a design layout for a gladiator's helmet.

DATA: $\mathrm{A}=50 ; \mathrm{B}=100 ; \mathrm{C}=150 ; \mathrm{D}=200 ; \mathrm{E}=250 ; \mathrm{F}=300 ; \mathrm{G}=350$;
$\mathrm{H}=400 ; \mathrm{I}=450 ; \mathrm{J}=500 ; \mathrm{K}=550 ; \mathrm{L}=600 ; \mathrm{M}=650 ; \mathrm{N}=700 ;$
$=750 ; ~ P=800 ; Q=850 ; R=900$.

ACI 7: MOVE I,E; DRAW H,F; DRAW H,J; DRAW E,K; DRAW E,J; DRAW G,H; DRAW H,A; DRAW C,C; DRAW D,M; DRAW I,M:

ACI 5: MOVE I,N; DRAW F,N; DRAW D,M:
ACI 3: MOVE H,O; DRAW G,O; DRAW F,N:
ACI 1: MOVE I,Q; DRAW H,P; DRAW H,N.

The DATA statement specifies the numeric values (in pixels) of given variables. MOVE positions the cursor at a new location without drawing a line. DRAW draws a line from a current location to a new location. The instruction ACI No. makes the images that follow the instruction appear in the colour associated with the number. The computer responds to the following colour commands:

COLOUR	RED	GREEN	BLUE	BLACK
ACI No.	1	3	5	7

a. Plot the image produced by this programme on the 900×900 grid given on the right.
(7)
b. Mirror the plotted design using the vertical centre line as the mirror line (line of symmetry).

Question 2.

The figure below shows a crane lifting a beam of concrete. The forces acting on the crane's hook are shown and labelled accordingly on the space diagram.
a. Draw a freehand sketch of the vector diagram in the space provided
b. Based on your freehand sketch and by using a scale of 10 mm to represent 1 kN , construct graphically the vector diagram to find the resultant force exerted on the crane's hook.
Write down the resultant force exerted on the crane's hook and show the direction of the resultant by adding an arrowhead to it on the vector diagram.
d. Draw TWO safety signs in the space provided, one representing a warning sign for 'falling objects' and the other a mandatory sign to 'wear a safety helmet'. At least ONE freehand preparatory sketch for each sign should be drawn in the space provided

\qquad

Question 3.

A trophy cup is shown below.
Draw the trophy design by constructing:
a. the locus of point P, as circle center A rolls without slipping on the given directing line for three-fourths of a revolution; mirror the locus of point P on the directing line;
mirror the bottom part of the trophy on the directing line;
draw, in freehand, the missing parts of the handle;
e. state and label the name of the generated locus;
f. (2) (2) (2) (1) render the base (material: wood) and the nameplate (material: brass). (4)
(Total: $\mathbf{1 6}$ marks)

Question 5.

The pictorial drawing on the right shows a bedside alarm clock. Its design is made out of a pentagonal prism intersecting a cylinder
Three orthographic views of this alarm clock are given below. These consist of an incomplete front elevation, an end elevation, and a plan in first angle projection.
a. Complete the front elevation by constructing the intersection between the two solids
b. Construct the development of the outer surface of the cylinder in the space provided, with the joint line at $\mathrm{X}-\mathrm{X}$.
c. Construct the development of the outer surface of the pentagonal prism in the space provided, with the joint line at J-J.

The function buttons and display screen have been removed from all elevations for simplicity purposes.
(Total: 16 marks)

END ELEVATION

FRONT ELEVATION

SURFACE DEVELOPMENT OF CYLINDRICAL PART of alarm clock

SURFACE DEVELOPMENT OF PENTAGONAL PRISM

Question 7.
An exploded pictorial view of a toy boat is shown on the right. Detail drawings of the separate parts and an items list are given.
Use the given starting lines to complete:
a. the front elevation of the assembled boat;
a. the front elevation of the assem

Note: Show all hidden detail.

(Total: 14 marks)

ITEMS LIST		
ITEM No.	DESCRIPTION	QUANTITY
1	HULL	1 off
2	TOP CABIN	1 off
3	DECK CABIN	1 off
4	DOWEL	2 off
5	MAST	1 off
6	CHIMNEY	1 off

ϕ^{A}

item 3 deck cabin

ITEM 6 CHIMNEY

Question 1

The following computer programme is written to create a design layout for a gladiator's dagger.

DATA: $\quad \mathrm{A}=50 ; \mathrm{B}=100 ; \mathrm{C}=150 ; \mathrm{D}=200 ; \mathrm{E}=250 ; \mathrm{F}=300 ; \mathrm{G}=350 ;$
$\mathrm{H}=400 ; \mathrm{I}=450 ; \mathrm{J}=500 ; \mathrm{K}=550 ; \mathrm{L}=600 ; \mathrm{M}=650 ; \mathrm{N}=700 ;$
$\mathrm{O}=750 ; \mathrm{P}=800 ; \mathrm{Q}=850 ; \mathrm{R}=900$.

ACI 7: MOVE I,A; DRAW H,B; DRAW H,F; DRAW F,F; DRAW F,G; DRAW I,G:
ACI 1: MOVE I,C; DRAW H,D:
ACI 1: MOVE H,E; DRAW I,F:
ACI 1: MOVE G,F; DRAW G,G:
ACI 3: MOVE H,G; DRAW I,Q.

The DATA statement specifies the numeric values (in pixels) of given variables. MOVE positions the cursor at a new location without drawing a line. DRAW draws a line from a current location to a new location. The instruction ACI No. makes the images that follow the instruction appear in the colour associated with the number. The computer responds to the following colour commands:

COLOUR	RED	GREEN	BLACK
ACI No.	1	3	7

a. Plot the image produced by this programme on the 900×900 grid given on the right.
(7)
b. Mirror the plotted design using the vertical centre line as the mirror line (line of symmetry).

Question 2.

The figure below shows a crane lifting a metal beam. The forces acting on the crane's hook are shown and labelled accordingly on the space diagram.
a. Draw a freehand sketch of the vector diagram in the space provided

Based on your freehand sketch and by using a scale of 10 mm to represent 1 kN , construct graphically the vector diagram to find the resultant force exerted on the crane's hook.
Write down the resultant force exerted on the crane's hook and show the direction of the resultant by adding an arrowhead to it on the vector diagram.
d. Colour the warning sign for 'falling objects'.

\qquad

Question 3.

A trophy cup is shown below.
Draw the trophy design by constructing:
a. the locus of point P, as circle center A rolls without slipping on the given directing line for half a revolution; mirror the locus of point P on the directing line; draw, in freehand, the missing parts of the trophy on the right state and label the name of the generated locus; render the base (material: wood) and the nameplate (material: brass). (4)
(Total: $\mathbf{1 6}$ marks)

Question 5.

The pictorial drawing on the right shows a bedside alarm clock. Its design is made out of a pentagonal prism intersecting a cylinder
Three orthographic views of this alarm clock are given below. These consist of an incomplete front elevation, an end elevation, and a plan in first angle projection

Complete the front elevation by constructing the intersection between the two solids.
b. Construct the development of the outer surface of the cylinder in the space provided, with the joint line at $\mathrm{X}-\mathrm{X}$.
c. Use the digital grid provided beneath the development to print the time at 15:47 (time at 23:06 is being given as an example).
d. Use simple block letters to label the remaining buttons as 'SETTINGS' and 'LIGHT' like the examples shown.

Note:
The function buttons and display screen have been removed from all elevations for simplicity purposes.
(Total: 16 marks)

END ELEVATION

FRONT ELEVATION

\qquad

SURFACE DEVELOPMENT OF CYLINDRICAL PART

PLAN

ALARM

DIGITAL GRID

SNOOZE

Question 7. An exploded pictorial view of a toy boat is shown on the right. Detail drawings of the separate parts and an items list are given.	ITEMS LIST		
	ITEM No.	DESCRIPTION	QUANTITY
	1	HULL	1 off
Use the given starting lines to complete:	2	TOP CABIN	1 off
a. the front elevation of the assembled boat; (6)	3	deck CAbin	1 off
b. the plan of the assembled boat;	4	DOWEL	2 off
c.	5	MAST	1 off
Note: Show all hidden detail.	6	CHIMNEY	1 off

Note: Show all hidden detail. (Total: $\mathbf{1 4}$ marks)

ITEM 1 HULL

FIRST ANGLE PROJECTION

ITEM 6 CHIMNEY
\qquad

