AM SYLLABUS (2011)
PHYSICS AM 26

SYLLABUS

Physics AM 26	(Available in September)
Syllabus	Paper 1 (3hrs) + Paper 2 (3hrs) + Practical paper 3 (2 hrs)

Aims of the Advanced Level Physics Curriculum

A course of study intended to prepare students for the Advanced Level Matriculation Examination in Physics should:

- promote an understanding of the nature and essence of physical principles;
- foster implementation of the scientific approach in the analysis of real life situations;
- encourage the development of problem solving techniques;
- encourage the development of practical skills;
- provide an appreciation that physical laws are universal;
- foster an appreciation and enjoyment of physics as a part of universal human culture;
- cultivate an appreciation of the influence of physics in everyday life;
- encourage an understanding of technological applications of physics and its importance as a subject of social, economic and industrial relevance.

Assessment Objectives

- Knowledge with understanding (35\%)
- Applications of concepts and principles (30\%)
- Communication and presentation (10\%)
- Experimental design, investigation and analysis (25\%)

Grade Descriptions

The grade descriptions indicate the criteria for awarding grades A, C and E . These criteria indicate the extent to which the assessment objectives are attained.

Objective/s	A	C	E
The candidate recalls and uses knowledge of Physics from...	the whole syllabus	most of the syllabus	some parts of the syllabus
The demonstration of the understanding of the principles and concepts is...	good	fair	poor
The candidate shows application of concepts and physical principles in contexts which...	are both familiar and unfamiliar	provide some guidance	are familiar or closely related
The candidate's level of communication and presentation is	clear, concise and direct	quite satisfactory	limited
In experimental work, the candidate makes and records measurements which are...	sufficient	almost sufficient	incomplete
In experimental work, the candidate shows awareness for precision which is	full	fair	lacking
In experimental work, the candidate's analysis of experimental data is...	rigorous	acceptable	mediocre

Examination

THREE papers as follows:

Paper I:	3 hours. Paper intended to assess candidates on the following topics: Physical Quantities (Section 1), Mechanics (Section 2), Materials (Section 4), Electric Currents (Section 5), Quantum Theory (Section 7.5) and, Nuclear and Particle Physics (Section 8). Section A - 8 short questions (90 minutes). Allotted 100 marks out of a total of 500 marks for the entire examination. Section B-7 longer structured questions to choose 4 (90 minutes). Allotted 100 marks out of a total of 500 marks for the entire examination. Marks: 40\%.
Paper II:	3 hours. Paper intended to assess candidates on the following topics: Thermal Physics (Section 3), Fields (Section 6), Vibrations and Waves (Section 7 except for sub-Section 7.5). Section A - 8 short questions (90 minutes). Allotted 100 marks out of a total of 500 marks for the entire examination. Section B-7 longer structured questions to choose 4 (90 minutes). Allotted 100 marks out of a total of 500 marks for the entire examination. Marks: 40\%.
Paper III:	2 hours. Practical session: Experimental Physics (Section 9) 1 experiment designed to take up to ~ 1 hour allotted for taking measurements. Questions will be set requiring candidates to present and analyse the experimental data and obtain from them specified quantities. Allotted 100 marks out of a total of 500 marks for the entire examination. Marks: 20%.

Notes:
(i) Each paper does not exclude requirement of knowledge of topics examined in any other paper.
(ii) Scientific calculators may be used throughout the examination. Nevertheless, the use of graphical and/or programmable calculators is prohibited. Disciplinary action will be taken against students making use of such calculators.

Suggested Textbooks

(a) For Students and Teachers

Adams, S. Particle Physics. Heinemann. ISBN 0-435-57084-6.
Adams, S. and Allday, J. Advanced Physics. Oxford University Press. ISBN 0-199-14680-2.
Akrill, T.B., Bennet, G. and Millar, C. Practice in Physics. Hodder \& Stoughton. ISBN 0-340-75813-9.
Carter, C. Physics: Facts and Practice for A-Level. Oxford University Press. ISBN 0-199-14768-X.
Chapple, M. The Complete A-Z Physics Handbook. Hodder \& Stoughton. ISBN 0-340-68804-1.
Duncan, T. Advanced Physics. John Murray. ISBN 0-719-57669-5.
Muncaster, R. A-Level Physics. Hyperion Books. ISBN 0-748-71584-3.

(b) For Teachers

Bishop, C. Particle Physics. John Murray. ISBN 0-7195-8589-9
Muncaster, R. Nuclear Physics and Fundamental Particles. Stanley Thornes ISBN 0-748-71805-2.
Sang, D. Nuclear and Particle Physics. Thomas Nelson and Sons Ltd. ISBN 0-174-48238-8.

Mathematical Requirements

Sufficient mathematical background is necessary for one to be able to understand and apply the principles of physics at this level. Students should understand the use of calculus notation to express
physical concepts such as those involving rate of change. The use of calculus to differentiate or integrate is not expected.

(a) Arithmetic and Computation

The use of decimal and standard form for numbers and recognize and use abbreviations for $10^{-12}, 10^{-9}$, $10^{-6}, 10^{-3}, 10^{3}, 10^{6}$ and 10^{9}. The use of an electronic calculator for addition, subtraction, multiplication and division; for calculations involving angles in both degrees and radians; for calculations involving reciprocals, squares, $\sin \theta, \cos \theta, \tan \theta, x^{n}, 10^{x}, \mathrm{e}^{x}$ and their inverses (square roots, $\sin ^{-1} \theta, \cos ^{-1} \theta, \tan ^{-1} \theta$, $\log x$ and $\ln x$); for calculations involving arithmetic means. The numerical handling of data, especially being aware of the number of significant figures to quote in numerical answers, is expected. Making approximate estimations to find the order of magnitude of numerical expressions.

(b) Algebra

Manipulating algebraic expressions, such as changing the subject of a formula (including terms having positive or negative, integer or fractional powers). Solving algebraic equations including those involving inverse and inverse square relationships. Solving simultaneous quadratic equations is expected. Construct and use simple mathematical equations to model a physical situation and to identify situations where the use of the model is inadequate. The use of logarithms to manipulate expressions such as $a b, a / b, x^{n}, e^{k x}$ is expected. Understand and use the symbols: $=,>,<, \gg, \ll, \approx, \propto, \sim, \Sigma x, \Delta x$.

(c) Geometry and Trigonometry

Calculate the areas of triangles, the circumference and areas of circles, and the surface areas and volumes of rectangular blocks, cylinders and spheres. Use Pythagoras' theorem, similarity of triangles and the angle sum of a triangle and a quadrilateral. The use of sine, cosine and tangent in physical problems is expected. To be able to understand the relationship between angular measure in degrees and in radians, translate from one to the other ensuring that the appropriate system is used. Be aware that for small angles $\sin \theta \approx \tan \theta \approx \theta$ (in radians), and that $\cos \theta \approx 1$.

(d) Graphs

Translate information between numerical, algebraic, written and graphical form. Select and plot two variables from experimental or other data, choosing suitable scales for graph plotting. Drawing a suitable best straight line through a set of data points on a graph. Understanding and using the standard equation of a straight-line graph $y=m x+c$, and rearranging an equation to linear form where appropriate. Determine the gradient and intercept of a linear graph. Using logarithmic plots (both log and ln) not scales to test exponential and power law variations. Sketch and recognize plots of common expressions like $y=k x, y=k x^{2}, y=k / x, y=k / x^{2}, y=\sin k x, y=\cos k x, y=e^{k x}$ and $y=e^{-k x}$. Interpret rate of change as the gradient of the tangent to a curve and its determination from a suitable graph. Understand the notation $d x / d t$ as the gradient of the graph of x against t, and hence the rate of change of x with t. Understand and use the area between a curve and the relevant axis when this area has physical significance, and to be able to calculate it or measure it by estimation or by counting squares as appropriate.

List of Experiments

List of Core Experiments

The following is a list of core experiments that form part of the syllabus. The candidate is required to have thorough knowledge (including experimental details) and understanding of each of them.

Experimental measurement of velocity and the subsequent calculation of acceleration.
Experimental investigation to prove that acceleration is proportional to the applied force for a body with a fixed mass.
Experimental investigation of the law of conservation of momentum.
Measurement of specific heat capacity and specific latent heat by electrical methods.
Experimental investigation with metals and polymers to determine their elastic properties, in particular the determination of Young's modulus for a wire.
Current-voltage characteristics for a metal wire at constant temperature, filament lamp and diode.
Determination of the temperature coefficient of resistance.
Experimental treatment of mechanical resonance, especially the variation of amplitude with forcing frequency.
Progressive wave method for finding the wavelength of sound waves.
Experiments to investigate reflection and refraction using visible light.
Use of the spectrometer to measure wavelength using a diffraction grating.
Experimental determination of the focal length of a thin converging lens by a graphical method.

List of Demonstrative Experiments

The following is a list of demonstrative experiments that form part of the syllabus. The candidate is required to have thorough understanding of each of them.

Experimental demonstration of the gas laws.
Use of a high-voltage voltmeter to measure charge.
Use of the Hall probe to investigate magnetic fields.
Experimental demonstration that rate of change/cutting of flux induces an e.m.f. in a circuit.
Experimental demonstration of Lenz's law.
Experiment to prove Faraday's second law $e \propto N \frac{d \Phi}{d t}$.
Experimental demonstrations of the effects of self-induction on growth and decay of current in d.c. circuits, and the chocking of an a.c. current.
Use of a search coil to investigate (oscillating) magnetic fields.
Experimental demonstration of stationary waves on a stretched wire.
Experiments to demonstrate reflection and refraction using microwaves.
Use of the Polaroid to demonstrate the transverse nature of electromagnetic waves.
Demonstration of diffraction of microwaves and visible light at a slit.
Demonstration of the two-slit experiment for the investigation of interference of light waves.

Syllabus

1. PHYSICAL QUANTITIES

1.1 Base quantities and units of the S.I. system:

Mass (kilogram, kg), length (metre, m), time (second, s), current (Ampere, A), temperature interval (Kelvin, K), amount of substance (mole).

Homogeneity of physical equations.

Definitions of derived quantities may be given in terms of a word equation, e.g. Momentum = mass times velocity. The ability to obtain derived units in terms of base units will be examined. Definitions of the base units will not be examined.

Homogeneity (using base units of the S.I. system only and not dimensions) as a necessary but not sufficient condition for the correctness of physical equations. The use of base units or dimensions to derive physical relationships is not required.

Recognition of physical quantities as vectors or scalars. The knowledge that the product of two vectors may or may not be a vector. Scalar and vector products are not expected. Problems involving relative velocity will not be set.

Experimental measurement of velocity and the subsequent calculation of acceleration. Velocity $=$ rate of change of displacement with time $=$ slope of displacement-time graph $=d s / d t$. Acceleration = rate of change of velocity with time $=$ slope of velocity-time graph $=d v / d t$.

Emphasis on independence of perpendicular vectors.

Forces outside the nucleus may be either gravitational or electromagnetic. The use of freebody diagrams to represent forces acting on bodies. Velocity-time graph for a body falling in a viscous medium: terminal speed. Laws of friction are not included.

Experimental investigation to prove that acceleration is proportional to the applied force for a body with a fixed mass.

Linear momentum.

Newton's second law.

Force $=d(m v) / d t$. Problems where both mass and velocity change are excluded.

The Newton.

Impulse.
Newton's third law.

Conservation of linear momentum in elastic and inelastic collisions.

2.3 Energy:

Work.

Power.
Potential energy.
Kinetic energy.

Law of conservation of energy.

2.4 Circular motion:

Angular speed, period, frequency.
Centripetal acceleration and centripetal force.

2.5 Equilibrium:

Turning effect of forces.
Centre of gravity.
Conditions for equilibrium of a rigid body.

2.6 Rigid bodies:

Energy of a rigid body rotating about a fixed axis.

Angular momentum and its conservation.

The reasoning from the second law to the definition of the Newton should be understood.

Students should be able to identify appropriate pairs of Newton third law forces.

Law of conservation of momentum derived from Newton's laws. Experimental investigation is expected. Problems on oblique collisions are excluded.

Work done by a varying force.
Power (energy transfer/s) = force times velocity.
Gravitational and elastic potential energy.
$1 / 2 m v^{2}$ at low speeds. The derivation of this expression is not required.

Energy transformation in simple systems from different branches of physics. Concept of efficiency.

The derivation of $a=v^{2} / r$, for a body moving at constant speed in a circular path is required. Examples to include the bicycle rider, banking of circular tracks and motion in a vertical circle.

Principle of moments, couple and torque.

Consideration of stability is not expected.

The concept of moment of inertia.
$E=1 / 2 I \omega^{2}$ should be understood but its derivation will not be examined.

Use of the equations for rotational motion with constant angular acceleration may be examined.

3. THERMAL PHYSICS

3.1 Temperature and heat:

Thermal equilibrium and temperature.

The ideal gas temperature scale.

Definition of Celsius temperature scale.

Temperature regarded as a property that tells whether systems are in thermal equilibrium or not.

Use of $T=273.16 X / X_{t p}$ to establish a temperature scale. Use of the constant-volume gas thermometer and the equation, $T=273.16 P / P_{t p}$ Kelvin in the limit as $P_{t p}$ approaches zero, to establish the ideal gas temperature scale. Students must be aware that more practical thermometers are available for reading Kelvin scale temperature (Qualitative description only. No structural details of thermometers are required.)

The Celsius temperature scale is defined by $\theta=\{T(\mathrm{~K})-273.15 \mathrm{~K}\}^{\circ} \mathrm{C}$.

Heat defined as energy transfer to due to a temperature difference.

3.2 Energy transfer:

Energy transfer by mechanical and electrical processes, or by heating.

First law of thermodynamics.

Isothermal and adiabatic changes.

Heat engines and heat pumps.

Second law of thermodynamics.

Use of $W=F \Delta s ; W=P \Delta V ; W=Q V ; Q=m c \Delta T ;$ $Q=m L$.

Meaning of $\Delta U, \Delta Q$ and ΔW in $\Delta U=\Delta Q+\Delta W$. The first law applied to a gas enclosed in a cylinder with a movable piston, to a filament lamp and the deformation of a metal wire.
Changes at constant volume and constant pressure, including $C p, C v$ and $C p-C v=R$.
$\Delta T=0$ implies $\Delta U=0$ for an ideal gas only. $\Delta U=$ ΔW for an adiabatic change. Work done $=$ area under $P-V$ graph. Use of $P V^{\gamma}=$ Constant is expected.

Principle of heat engine and heat pump. Use of the equation for the coefficient of performance of refrigerators and heat pumps. Efficiency of heat engines. Factors limiting practical efficiency.

Heat engine and heat pump statements of the second law of thermodynamics. The statement of the second law in terms of entropy is not expected.

3.3 Heating matter:

Measurement of specific heat capacity and specific latent heat by electrical methods.

Simple direct measurements emphasizing energy conversion. Identification of experimental errors. Calculation of heat losses is not included. Knowledge of constant flow techniques is not expected.

3.4 Kinetic theory of gases:

Brownian motion as evidence of the random motion of gas molecules.

Gas laws.

The ideal gas equation.

The ideal gas model.

Knowledge of their experimental demonstration. Graphs of $P V / T$ against P for one mole of any real gas approach the constant R as P approaches zero.

Use of $P V=n R T=(m / M) R T$ for real gases at low pressures. Description of real gas behaviour is not expected.

Derivation of $P=1 / 3 \rho<c^{2}>$. Application to $P V=n R T$ and the internal energy of an ideal gas.

Relationship between absolute temperature and kinetic energy of molecules.

The distribution of molecular speeds.

3.5 Transfer of heat:

Conduction, convection, radiation and evaporation.

Thermal conductivity. Simple problems in one dimension.

Radiation.

Energy in buildings.
T proportional to the average kinetic energy of molecules. Derivation of $1 / 2 m\left\langle c^{2}\right\rangle=3 k T / 2$. Concept of root-mean-square speed.

A description of how molecular speeds are measured is not included. Qualitative approach only.

Qualitative descriptions of these processes.

Experiments to obtain k are not required. Use of $d Q / d t=-k A(d \theta / d x)$.

Qualitative idea of the variation of intensity with wavelength for the radiation from a black body at various temperatures.
The inverse square law for decrease of intensity with distance from a point source.

Space heating.
Energy losses by conduction, convection and radiation. U-values, defined as follows:
$U=(d Q / d t) /(A \Delta \theta)$

4. MATERIALS

4.1 Solids:

Force-extension graphs for metals, polymers (polythene and rubber) and glassy substances.

Stress, strain and Young's modulus.

Elastic energy stored in a stretched wire.

Hooke's law, elastic limit, yield point and plastic flow are included. Knowledge of experimental work with metals and polymers is required.

Determination of Young's modulus for a wire.

Elastic energy stored in a stretched wire is equal to the area under force against extension or force against compression graphs $\left(E=1 / 2 k x^{2}\right)$.

5. ELECTRIC CURRENTS

5.1 Charge and current:

Current as the rate of flow of charge.
Current model.
Intrinsic and extrinsic semiconductors

Simple band theory

Electrical potential difference.
E.m.f. of a cell.

Kirchoff's laws.

5.2 Resistance:

Current-voltage characteristics for a metal wire at constant temperature, filament lamp and diode.

Resistivity and conductivity.
Temperature dependence of resistance of metals and thermistors.

Internal resistance of a cell and its measurement.

Resistors in series and in parallel.

The potential divider.

Balance of potentials and the principle of null methods.

Energy and power in d.c. circuits.
Use of ammeters, voltmeters and multimeters.

Current $=$ slope of charge-time graph $=d Q / d t$.
Derivation of $I=n A v e$ is expected. Distinction between conductors, semiconductors and insulators using the equation.

Crystal structure of silicon. Effect of impurities and temperature on conduction.

To explain differences between conductors, intrinsic and extrinsic semiconductors, and insulators

Potential difference $=$ work done/charge.
Definition of e.m.f.
Simple circuit calculations.
Emphasis on conservation of charge and energy.

Experimental investigations are expected.

Experimental investigation included. Determination of the temperature coefficient of resistance.

Practical importance of internal resistance in car battery and extra high-tension supplies.

Simple circuit problems, including the use of Kirchoff's laws.

The potential divider equation. Use of lightdependent resistor or thermistor to control voltage.

Circuit principles are expected. Only simple numerical problems based on simple circuits can be set. Reference to terms such as 'potentiometer', 'Wheatstone Bridge', etc., are to be avoided.

Including the kilowatt-hour.
Extension of range of electrical meters. Internal structure of meters is not included.

6. FIELDS

6.1 Gravitational fields:

Newton's law of gravitation.

Gravitational field strength g.

Gravitational potential in a radial field.

Representation of uniform and radial fields by lines of force and equipotential surfaces.

Motion of satellites in circular orbits. Escape velocity.

Satellites in communications

6.2 Electrostatic fields:

Simple electrostatic phenomena.

Inverse square law in electrostatics.
Use of lines of force and equipotentials to describe electric fields qualitatively.

Electric field strength defined as $E=F / Q$.
Electric potential and potential difference.

Relation between E and V.

Acceleration of charged particles moving along the field lines of a uniform electric field.

Physical principles of linear accelerators.

Variation of g over the earth's surface and with height, excluding variation with depth.

The idea of apparent weightlessness for freely falling bodies should be understood.

Geosynchronous and polar orbits. Advantages and disadvantages. Use of satellites (brief qualitative description only).

Charging conductors by induction. Point charges in vacuum.

Experimental demonstration is not required.
E for uniform and radial fields.
V for uniform and radial fields
$E=-d V / d s$.
Use of $Q V=1 / 2 m v^{2}$. Definition of the electron volt.

The linear accelerator to reach GeV . Understanding qualitatively that particles never reach the speed of light.

Deflection of charged particles in uniform electric fields.

6.3 Capacitors:

Factors affecting the capacitance of a parallel plate capacitor.

Relative permittivity.
$Q=C V ; \varepsilon_{r}=C / C_{o} ; C=\varepsilon_{r} \varepsilon_{o} A / d$. No experimental determination of the listed parameters is expected.

Different types of capacitors.

Charge stored on a capacitor.

Exponential growth and decay of charge stored in a capacitor in series with a resistor. Time constant.

Energy stored in a capacitor.
Capacitors in series and in parallel.

6.4 Magnetic fields:

Magnetic effect of a steady current.

Force on a straight current-carrying conductor in a uniform magnetic field.

Magnetic flux density. The Tesla.
Torque on a rectangular coil in a uniform and a radial magnetic field

Use of Hall probe to investigate B.

Force between two parallel currentcarrying straight conductors.

Force on a charged particle moving in a circular orbit through a magnetic field.

Crossed electric and magnetic fields.

Physical principles of ring accelerators.

Structure of the electrolytic capacitor may be examined.
$Q=V C$. Use of high resistance voltmeter to measure charge.

Exponential form of graph to be understood and related to the decay of radioactivity.
Use of graph to determine $R C$.
Use of equations for the growth and decay of charge, current and voltage in $R-C$ circuits. Derivation of these equations is not required.
$1 / 2 C V^{2}$ from area under a $Q-V$ graph.
Simple circuits.
B-field patterns near a straight conductor and solenoid.
B defined from $F=B I l$. Vector nature of B.
Derivation and use of $\tau=B A N I \cos \theta$.
$B=\mu_{o} I / 2 \pi r$ and $B=\mu_{0} n I$ to be investigated experimentally but their derivation is not required. Derivation of equation for Hall voltage is required.

Definition of the ampere. Awareness that the forces are Newton's Third Law pairs.

Derivation of $F=B Q v$.

At right angles only. The mass spectrometer as an application.

The cyclotron: derivation of the supply frequency for non-relativistic particles.

6.5 Electromagnetic induction:

Magnetic flux and flux linkage.

Faraday's and Lenz's laws of electromagnetic induction.

Experimental demonstration that the rate of change/cutting of flux induces an e.m.f. in a circuit.
$e=-N d \phi / d t$. Derivation of $e=B l v$ is expected.
Lenz's law and energy conservation. Use of search coil to investigate oscillating magnetic fields. Effect of speed on current. Experimental demonstration of Lenz's law. Experiment to prove

Back e.m.f. in electric motors.
Mutual inductance and self-inductance.

Growth and decay of current in inductive circuits.

The simple generator.

Electricity distribution.

6.6 Alternating currents:

Peak and root mean square values and their relationship for sinusoidal currents and potential difference.

Use of the oscilloscope as a voltmeter and as a clock.

The p-n junction diode. Forward and reverse bias characteristics.

Half-wave and full-wave rectification circuits.

7. VIBRATIONS AND WAVES

7.1 Simple harmonic motion:

The simple harmonic motion of a particle treated algebraically and graphically.

Velocity-time and acceleration-time graphs.

Energy in simple harmonic motion.
Examples of simple harmonic systems.

Faraday's second law $e \propto N \frac{d \Phi}{d t}$.
$e=-L d I / d t$ and $e=-M d I / d t$ obtained from $e=-N$ $d \phi / d t . W=1 / 2 L I^{2}$ (Derivation is not expected).

Use of equations for I, V_{R} and V_{L} is expected but their derivation is not required. Experimental demonstrations of the effects of self-induction on growth and decay of current in d.c. circuits, and the chocking of an a.c. current.

The e.m.f. produced when a rectangular coil rotates in a uniform magnetic field.

Advantages of high voltage and low current transmission (the role of the transformer). Knowledge of typical voltages is expected.

Knowledge and use of $I_{r m s}=I_{o} / \sqrt{ } 2$, and $V_{r m s}=$ $V_{o} / \sqrt{ } 2$. Derivation of these equations is not expected.

Knowledge of the internal structure of the oscilloscope is not required.

Rectifying action of p-n junction diode in terms of majority and minority carriers. Depletion layer.

Single diode and bridge circuits including the use of the smoothing capacitor.

Use of the equations for x, v, and a, but their derivation will not be examined. Connection of SHM with circular motion. Idea of phase is required.

Graphical and algebraic treatment.

Only the derivation of the equation for the period of the mass-spring system is required.

Free and forced oscillations.

Damped vibrations.

Decay of amplitude in damped vibrations. An understanding of the difference between the different types of damping: light, critical and overdamped oscillations are required.

Mechanical resonance.

7.2 Waves:

The progressive wave.

Wave propagation.

Longitudinal and transverse progressive waves.

Measurement of the speed of sound in free air.

Electromagnetic waves.

Plane polarisation.

7.3 Superposition of waves:

The principle of superposition and the formation of stationary waves.

Stationary waves on strings as demonstration of resonance states.

Demonstration of diffraction of microwaves and visible light at a slit.

Importance of resolving power for instruments.

Interference of light waves in the two-slit experiment.

Experimental treatment of variation of amplitude with forcing frequency. Examples to include vibrating strings.

Amplitude, speed, wavelength, frequency and phase interpreted graphically. Displacementposition and displacement-time graphs. Knowledge of the progressive wave equation is required.

Concept of wavefront. Huygens' construction for wave propagation to introduce the concept of wavefront only. Problems involving Huygen's construction will not be set.

Waves in water, waves along springs and sound waves as examples. Particle displacement graphs for transverse and longitudinal waves, and pressure variation for longitudinal waves.

Progressive wave method for finding the wavelength of sound waves.

Reflection and refraction demonstrated using visible light and microwaves. Furthermore, for visible light, experimental investigation is required. Electromagnetic wave velocity in free space, $c=$ $1 / \sqrt{ }\left(\varepsilon_{0} \mu_{0}\right)$.

Use of the Polaroid to demonstrate the transverse nature of electromagnetic waves.

Displacement-position graphs used to explain formation of nodes and antinodes. Contrast between progressive and stationary waves.

Use of the formula $f=1 / 2 L \sqrt{T / \mu}$ and the associated harmonics. Experimental demonstration of stationary waves on a stretched wire.

Effect of relative size of slit and wavelength on diffraction pattern. Derivation of $\theta=\lambda / a$, for a slit of width d is not required.

Effect of aperture and wavelength on resolving power. Limit of resolution. Use of $\operatorname{Sin} \theta=1.22 \lambda / a$, for resolution by circular apertures is expected. Derivation of formula is not expected.

Explanation of the formation of the interference pattern in terms of phase difference between the two wave trains. Effect of changes in wavelength and slit separation on the interference pattern. Conditions for visible interference patterns.

Optical transmission grating.
Proof of $\lambda=s d / D$, is not required.
Knowledge of experimental details is expected and a demonstration of the experiment is essential.

Use of the spectrometer to measure wavelength using a diffraction grating. Adjustments of spectrometer will not be examined.
Comparison of the spectra produced by a diffraction grating and a prism.

7.4 Optics:

Laws of reflection and refraction.

Refractive index. Snell's law in terms of the ratio of velocities in different media.

Reflection and refraction at a plane interface only.

Use of $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ and ${ }_{1} n_{2}=v_{1} / v_{2}$. Knowledge that the speed of light in material media depends on the frequency.

Total internal reflection and critical angle.

Transmission of information through fibre optics

Refraction of light by thin converging and diverging lenses.

The main components needed for transmission of a signal using optical fibres (limited to step-index fibres). A block diagram approach is sufficient.

Use of $1 / f=1 / u+1 / v$, real is positive (or in Cartesian form) and magnification $=v / u$. Single lens problems only.

Experimental determination of the focal length of a thin converging lens by a graphical method.

The inability of the wave theory to explain the experimental results. Einstein's photoelectric equation. Concept of stopping voltage and its measurement.

Explanation of emission and absorption line spectra. Use of $E_{2}-E_{1}=h f$.

Qualitative description of electron diffraction. The de Broglie equation $\lambda=h /(m v)$. Candidates should be aware that the square of the amplitude of the wave representing the electron, is indicative of the probability of finding the electron in a particular space. Eg. In a standing wave, there is a higher probability of finding the electron at its antinodes than at its nodes.

7.6 The expanding universe:

Electromagnetic Doppler effect.

Expansion of the Universe. Hubble's law.

Qualitative treatment of the Doppler shift of spectral lines

The red shift of galaxies. $v=H d$, with H in s^{-1}. Notion of the Big Bang. The age of the Universe: uncertainty in d and H. The various stages (e.g.
quark-lepton era, hadron era) not to be examined.

8. NUCLEAR AND PARTICLE PHYSICS

8.1 Evidence for a nuclear atom:

Alpha scattering experiment.
The need for the strong nuclear force
between nucleons

Nuclear size.

Deep inelastic scattering as experimental evidence of the existence of quarks.

Stable and unstable nuclei.
The neutrino. The positron as an example of antimatter.

Binding energy.

Fission and fusion.

Properties of alpha, beta (+ and -) and gamma radiation.

Health hazards and protection.
Radioactivity as a random process.
The law of radioactive decay.

Emphasis on the results of the experiment and their interpretation. The nuclear size. Distance of closest approach.

Electrostatic repulsion between protons.
Comparative ranges of the electrostatic and strong forces.

Variation of nuclear size with nucleon number.
$R=R_{o} A^{1 / 3}$.
The use of electrons of high energy to reveal the structure of the nucleons as made up of sub-atomic particles. No knowledge of the latter is expected. The quark composition of the nucleus is NOT required.
Ability to determine the energy of bombarding particles by considering their appropriate de Broglie wavelength. Candidates should be aware that very high energy electrons constitute a beam of area of cross-section of the same order of magnitude as that of the proton.
$\mathrm{N}-\mathrm{Z}$ curve for stable nuclei.
Decay of the n and p within the nucleus.
Energy spectra for beta. The prediction of the neutrino and antineutrino. Their experimental confirmation is not expected.

The binding energy per nucleon curve. Use of the unified mass constant u and $E=m c^{2}$.

Treated as nuclear reactions in which a large amount of energy is given out as can be inferred from the binding energy per nucleon curve. Fission of the Uranium nucleus. Chain reaction. Nuclear fusion as a future source of energy.

Inverse square law and absorption law for gamma radiation. Half-value thickness.

Background radiation and its sources.

Use of $d N / d t=-\lambda N$ and $N=N_{o} \mathrm{e}^{-\lambda t}$. Derivation of $N=N_{o} \mathrm{e}^{-\lambda t}$ is not required but the relation between decay constant and half-life should be understood.

Determination of the half-life of radon.

9. EXPERIMENTAL PHYSICS

9.1 Laboratory practice and data analysis:

Systematic and random errors.

Estimate of the uncertainty in a measured quantity.

Suitable techniques for measuring mass, length, time, current and temperature.

The use of micrometer and vernier scales. Use of the oscilloscope as a voltmeter and as a clock.

The assembly of simple electric circuits and the use of electrical measuring instruments.

The ability to design and carry out simple investigations will be examined.

The appropriate handling of experimental data is expected but the composition of errors is not required. Qualitative description of sources of errors and precautions is expected.

The relevance of significant figures should be emphasized.

GENERAL NOTE

Analogies of physical phenomena across the syllabus should be highlighted.

Data Sheet

The following equations may be useful in answering some of the questions in the examination.

Uniformly accelerated motion:

Useful formulae:

$$
\begin{aligned}
& v=u+a t \\
& s=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a s \\
& s=\left(\frac{u+v}{2}\right) t
\end{aligned}
$$

Mechanics:

$$
\begin{array}{ll}
\text { Newton's second law: } & F=\frac{d(m v)}{d t} \\
\text { Power: } & P=F v \\
\text { Momentum: } & p=m v
\end{array}
$$

Circular motion:

| Angular speed: | $\omega=\frac{d \theta}{d t}=\frac{v}{r}$ |
| :--- | ---: | :--- |
| Angular acceleration: | $\alpha=\frac{d \omega}{d t}=\frac{a}{r}$ |
| Centripetal acceleration: | $a=\frac{v^{2}}{r}$ |
| Torque: | $\tau=I \alpha$ |
| Work done in rotation: | $T \theta=\frac{1}{2} I \omega^{2}$ |

Simple harmonic motion:

Displacement:
$x=x_{0} \sin (\omega t+\phi)$
Velocity:
Acceleration:
$v=\omega x_{0} \cos (\omega t+\phi)$

Period:
$a=-\omega^{2} x$
$T=\frac{1}{f}=\frac{2 \pi}{\omega}$
Mass on a light spring: $\quad T=2 \pi \sqrt{\frac{m}{k}}$

Ray optics:

Refractive index: ${ }_{1} n_{2}=\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}$

$$
{ }_{1} n_{2}={ }_{1} n_{3 \cdot 3} n_{2}
$$

Thin lenses: $\quad \frac{1}{f}=\frac{1}{u}+\frac{1}{v}$ (real is positive)

$$
\frac{1}{f}=\frac{1}{v}-\frac{1}{u}(\text { Cartesian })
$$

Magnification: $\quad m=\frac{v}{u}=\frac{h_{i}}{h_{o}}$ (real is positive)

$$
m=-\frac{v}{u}=-\frac{h_{i}}{h_{o}}(\text { Cartesian })
$$

Current electricity:

Current: $\quad I=n A v e$
Resistors in series: $\quad R_{\text {TOTAL }}=R_{1}+R_{2}+\ldots$
Resistors in parallel: $\quad \frac{1}{R_{\text {TOTAL }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$
Power: $\quad P=I V$
Resistivity: $\quad \rho=\frac{R A}{l}$
Temperature coefficient: $\alpha=\frac{R_{\theta}-R_{0}}{R_{0} \theta}$

Alternating current:

For sinusoidal alternating current:

$$
I=I_{\mathrm{o}} \sin 2 \pi f t
$$

Root mean square for sinusoidal alternating current and voltage: $\quad I_{r m s}=\frac{I_{0}}{\sqrt{2}} ; V_{r m s}=\frac{V_{0}}{\sqrt{2}}$
Ideal transformer: $\quad \frac{N_{P}}{N_{S}}=\frac{V_{P}}{V_{S}}$

$$
I_{P} V_{P}=I_{S} V_{S}
$$

Stationary waves:

Fundamental frequency (strings): $f=1 / 2 L \sqrt{T / \mu}$

Wave motion:

$\begin{array}{ll}\text { Two slit interference: } & s=\frac{\lambda D}{d} \\ \text { Diffraction grating: } & d \sin \theta=n \lambda \\ \text { Single slit diffraction: } & \theta=\frac{\lambda}{a}\end{array}$
Diffraction of circular aperture: $\sin \theta=1.22 \frac{\lambda}{d}$

Fields:

Electric field strength: $\quad E=\frac{F}{+q}=-\frac{d V}{d s}$
Uniform field: $\quad E=\frac{F}{+q}=\frac{V}{d}$
Force between point charges: $\quad F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$
Electric field strength of a point charge:

$$
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

Force between point masses: $\quad F=G \frac{M_{1} M_{2}}{r^{2}}$
Electric potential: $\quad V=\frac{Q}{4 \pi \varepsilon_{0} r}$
Gravitational potential: $\quad V_{G}=-\frac{G M}{r}$

Capacitance:

Capacitance of parallel plates: $C=\frac{\varepsilon_{0} \varepsilon_{r} A}{d}$
Capacitors in parallel:
Capacitors in series:
Energy stored:

Charging:

Discharging:

$$
C=C_{1}+C_{2}+\ldots
$$

$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots$
$W=\frac{1}{2} C V^{2}$
$Q=Q_{0}\left(1-e^{-\frac{t}{R C}}\right)$
$Q=Q_{0} e^{-\frac{t}{R C}}$

Inductance:

Mutual inductance: $\quad M=-\frac{e}{d I / d t}$
Self inductance: $\quad L=-\frac{e}{d I / d t}$
Energy stored: $\quad W=\frac{1}{2} L I^{2}$
Growth of current: $I=I_{0}\left(1-e^{\frac{-R t}{L}}\right)$

Decay of current:
$I=I_{0} e^{\frac{-R t}{L}}$

Electromagnetism:

Force on wire:	$F=B I l \sin \theta$
Force on moving charge:	$F=B Q \nu \sin \theta$
Magnetic flux:	$\Phi=B A$
Field inside a solenoid:	$B=\mu_{0} n I$

Materials:

Hooke's law:
Stress:
Strain:

Young's modulus:

$$
\begin{aligned}
F & =k \Delta x \\
\sigma & =\frac{F}{A} \\
\varepsilon & =\frac{\Delta l}{l}
\end{aligned}
$$

$$
\text { Energy stored in a stretched wire: } \quad E=1 / 2 k x^{2}
$$

Field near a long straight wire: $B=\mu_{0} \frac{I}{2 \pi r}$
Induced e.m.f.:

$$
e=-N \frac{d \Phi}{d t}
$$

E.m.f. induced in a moving conductor:

$$
e=B l v
$$

Simple alternator e.m.f.: $\quad e=E_{0} \sin (\omega t+\phi)$
Hall voltage: $\quad V_{H}=\frac{B I}{n Q t}$

First and second laws of thermodynamics:

First law of thermodynamics: $\quad \Delta U=\Delta Q+\Delta W$
Ideal heat engine:

$$
\eta=1-\frac{T_{c}}{T_{h}}
$$

Gases:

Ideal gas equation: $\quad P V=n R T=\frac{m}{M} R T$
Kinetic theory of an ideal gas:

$$
\left.P V=\frac{1}{3} N m<c^{2}\right\rangle
$$

Boltzmann's constant: $k=\frac{R}{N_{A}}$
Principal molar heat capacities of an ideal gas:

$$
\gamma=\frac{C_{P}}{C_{V}} ; C_{P}-C_{V}=R
$$

Adiabatic process: $\quad P V^{\gamma}=$ Constant

Temperature:

Temperature (K): $T=273.16 \frac{X}{X_{0}} \mathrm{~K}$
Ideal gas scale: $\quad T=273.16 \lim \frac{P}{P_{t r}}\left(\right.$ as $\left.P_{t r} \rightarrow 0\right)$
Celsius scale: $\quad \theta\left({ }^{\circ} \mathrm{C}\right)=T(\mathrm{~K})-273.15 \mathrm{~K}$

Thermal conduction:

Useful formula: $\quad \frac{d Q}{d t}=-k A \frac{d \theta}{d x}$
U-value: $\quad U=\frac{d Q / d t}{A \Delta \theta}$

Quantum phenomena:

Quantum energy: $\quad E=h f$
Mass-energy $\quad E=m c^{2}$
Photoelectric effect: $\quad h f=\Phi+\left(\frac{1}{2} m v^{2}\right)_{\max }$
Energy levels: $\quad h f=E_{2}-E_{1}$
De Broglie wavelength: $\quad \lambda=\frac{h}{m v}$

Radioactivity:

Decay rate: $\quad \frac{d N}{d t}=-\lambda N ; N=N_{o} e^{-\lambda t}$
Half life $\quad T_{1 / 2}=\frac{\ln 2}{\lambda}$

