SYLLABUS

Physics IM 26	(Available in September)
Syllabus	1 Paper (3hrs)

Aims of the Intermediate Level Physics Curriculum

A course of study intended to prepare students for the Intermediate Level Matriculation Examination in Physics should:

- promote an understanding of the nature and essence of physical principles;
- foster implementation of the scientific approach in the analysis of real life situations;
- encourage the development of problem solving techniques;
- foster an appreciation and enjoyment of physics as a part of universal human culture;
- encourage the development of practical skills;
- provide an appreciation that physical laws are universal;
- cultivate an appreciation of the influence of physics in everyday life;
- encourage an understanding of technological applications of physics and its importance as a subject of social, economic and industrial relevance.

Examination

The examination consists of ONE three-hour written paper having the following structure.

Section A - 8 to 10 short compulsory questions, which in total carry 50% of the marks (90 minutes).
Section B-1 compulsory question on data analysis, which carries 14% of the marks (25 minutes).
Section C-4 longer structured questions to choose 2 , each carrying 18% of the marks i.e. 36% allotted for the Section (65 minutes).

It should be noted that while the students will not be tested in a formal practical examination, it is expected that they will have some opportunity to familiarise themselves with some basic experimental techniques and experiments illustrating the syllabus content during their studies. Questions may be set testing the students' familiarity with the main experiments mentioned in the syllabus.

Note:
Scientific calculators may be used throughout the examination. Nevertheless, the use of graphical and/or programmable calculators is prohibited. Disciplinary action will be taken against students making use of such calculators.

Assessment Objectives

- Knowledge with understanding (40\%)
- Applications of concepts and principles (35\%)
- Communication and presentation (10\%)
- Analysis of experimental data (15\%)

Grade Descriptions

The grade descriptions indicate the criteria for awarding grades A, C and E . These criteria indicate the extent to which the assessment objectives are attained.

Objective/s	A	C	E
The candidate recalls and uses knowledge of Physics from...	the whole syllabus	most of the syllabus	some parts of the syllabus
The demonstration of the understanding of the principles and concepts is...	good	fair	poor
The candidate shows application of concepts and physical principles in contexts which...	are both familiar and unfamiliar	provide some guidance	are familiar or closely related
The candidate's level of communication and presentation is	clear, concise and direct	quite satisfactory	limited
In experimental work, the candidate's analysis of experimental data is...	rigorous	acceptable	mediocre

Mathematical Requirements

Sufficient mathematical background is necessary for one to be able to understand and apply the principles of physics at this level. Students should understand the use of calculus notation to express physical concepts such as those involving rate of change, but the use of calculus to differentiate or integrate is not expected.

(a) Arithmetic and computation

The use of decimal and standard form for numbers, and recognize and use abbreviations for $10^{-12}, 10^{-9}, 10^{-6}$, $10^{-3}, 10^{3}, 10^{6}$ and 10^{9}. The use of an electronic calculator for addition, subtraction, multiplication and division; for calculations involving angles in degrees only; for calculations involving reciprocals, squares, $\sin \theta, \cos \theta, \tan \theta, x^{\mathrm{n}}$ and their inverses (square roots, $\sin ^{-1} \theta, \cos ^{-1} \theta, \tan ^{-1} \theta$) for calculations involving arithmetic means. The proper numerical handling of data, especially being aware of the number of significant figures to quote in numerical answers, is expected. Making approximate estimations to find the order of magnitude of numerical expressions.

(b) Algebra

Manipulating algebraic expressions, such as changing the subject of a formula, including terms having positive or negative, integer or fractional powers is expected. Solving simple algebraic equations. Solving simultaneous quadratic equations is not expected. Construct and use simple mathematical equations to model a physical situation and to identify situations where the use of the model is inadequate. Understand and use the symbols: $=,>,<, \gg, \ll, \approx, \propto, \sim, \Sigma x, \Delta x$.

(c) Geometry and trigonometry

Calculate the areas of triangles, the circumference and areas of circles, and the surface areas and volumes of rectangular blocks, cylinders and spheres. Use Pythagoras' theorem, similarity of triangles and the angle sum of a triangle and a quadrilateral. Use sines, cosines and tangents in physical problems.

(d) Graphs

Translate information between numerical, algebraic, written and graphical form. Select and plot two variables from experimental or other data, choosing suitable scales for graph plotting. Drawing a suitable best straight line through a set of data points on a graph. Understanding and using the standard equation of
a straight-line graph $y=m x+c$, and rearranging an equation to linear form where appropriate. Determine the gradient and intercept of a linear graph. Sketch and recognize plots of common expressions like $y=k x$, $y=k x^{2}, y=k / x, y=k / x^{2}$, Interpret rate of change as the gradient of the tangent to a curve and its determination from a suitable graph. Understand the notation $d x / d t$ as the gradient of the graph of x against t, and hence the rate of change of x with t. Understand and use the area between a curve and the relevant axis when this area has physical significance, and to be able to calculate it or measure it by estimation or by counting squares as appropriate.

Syllabus

1. PHYSICAL QUANTITIES

1.1 Base quantities and units of the S.I. Base quantities:

Mass (kilogram, kg), length (metre, m), time (second, s), current (Ampere, A), temperature interval (Kelvin, K), amount of substance (mole).

Homogeneity of physical equations.
Definitions of derived quantities may be given in terms of a word equation, e.g. Momentum = mass times velocity. The ability to obtain derived units in terms of base units will be examined. Definitions of the base units will not be examined.

Homogeneity (using base units of the S.I. system only and not dimensions) as a necessary but not sufficient condition for the correctness of physical equations. The use of base units or dimensions to derive physical relationships is not required.

1.2 Scalar and vector quantities:

The composition and resolution of vectors.
Recognition of physical quantities as either vectors or scalars. Addition of two perpendicular vectors. Resolution of a vector into two perpendicular components.

2. MECHANICS

2.1 Rectilinear motion:

Displacement, speed, velocity and acceleration. Equations for uniformly accelerated motion. Displacement-time and velocity-time graphs.

Direct measurement of the acceleration of free fall.

Horizontally projected particle.
Experimental measurement of velocity and the subsequent calculation of acceleration. Velocity $=$ rate of change of displacement with time $=$ slope of displacement-time graph $=\Delta s / \Delta t$. Acceleration $=$ rate of change of velocity with time $=$ slope of velocity-time graph $=\Delta v / \Delta t$. The ability to differentiate and integrate will not be examined.

Simple experiment.

Simple problems only.

2.2 Newton's laws of motion:

Newton's first law.

Linear momentum.
Newton's second law.

The Newton

Newton's third law.

Conservation of linear momentum in elastic and inelastic collisions.

Forces outside the nucleus may be either gravitational or electromagnetic. The use of freebody diagrams to represent forces acting on bodies. Velocity-time graph for a body falling in a viscous medium; terminal speed. Laws of friction are not included.

Force $=\Delta(m v) / \Delta t$.
The reasoning from the second law to the definition of the Newton should be understood.

Students should be able to identify appropriate pairs of Newton third law forces.

Conservation of momentum for motion in one dimension only. Knowledge of experimental method is expected. Problems involving the solution of quadratic equations will not be set in the examination.

Work is defined as force multiplied by displacement in the direction of the force.

Energy stored in a stretched or compressed material is equal to area under force against extension or force against compression graph.

The acceleration due to gravity, g, is assumed constant.

The derivation of kinetic energy $=1 / 2 m v^{2}$ is not required.

Law of conservation of energy.

2.4 Circular motion:

Centripetal acceleration and centripetal force.

The necessity of an unbalanced force for circular motion of a particle moving with constant linear speed. Knowledge of $a=v^{2} / r$ is required but its derivation will not be examined. No reference to angular speed ω is expected.

3. THERMAL PHYSICS

3.1 Temperature and heat energy.

Thermal equilibrium and temperature.

Practical use of thermometers.

Temperature regarded as a property, which changes physical parameters such as length of a mercury column, the electromotive force of a thermocouple and the resistance of a wire.

Practical Celsius scale defined by $t=100\left(X_{t}-\right.$ $\left.X_{\mathrm{o}}\right) /\left(X_{100}-X_{\mathrm{o}}\right)$, where X could be the length of a liquid column, the electromotive force of a thermocouple, the resistance of a wire or the pressure of gas at constant volume. Conversion from Celsius to Kelvin scale using $T(\mathrm{~K})=t\left({ }^{\circ} \mathrm{C}\right)+$ 273.15 K.

Use of $W=F \Delta s ; W=P \Delta V ; W=Q V ; Q=m c \Delta T ; Q$ $=m L$.

Meaning of $\Delta U, \Delta Q$ and ΔW in $\Delta U=\Delta Q+\Delta W$.
The first law applied to a gas enclosed in a cylinder with a movable piston, to a filament lamp and the deformation of a metal wire.

Simple direct measurements emphasizing energy conversion. Identification of experimental errors. Calculation of heat losses is not included. Constant flow techniques are not expected.

Hooke's law, elastic limit, yield point and breaking point are included. Elastic and plastic behaviour should be discussed. Knowledge of experimental work with metals and rubber is expected.

Knowledge of an experiment to determine Young's modulus for a long wire is expected.

5. ELECTRICAL CURRENTS

5.1 Charge and current:

Current as the rate of flow of charge.

Current model.

Electrical potential difference.
Electromotive force of a cell.

Current $=$ slope of charge against time graph $=$ $\mathrm{d} Q / \mathrm{d} t$.

Derivation of $I=n A v e$. Distinction between conductors, insulators and semiconductors using this equation.

Potential difference $=$ work done $/$ charge
Definition of electromotive force.
The slide wire potentiometer is not expected.

5.2 Resistance:

Current-voltage curves for a wire at constant temperature, filament lamp, diode and thermistor.

Temperature dependence of resistance of metals and thermistors.

Internal resistance of a cell and its measurement.

Resistors in series and in parallel.

The potential divider.
Energy and power in d.c. circuits.

Use of ammeters, voltmeters and multimeters.

6. FIELDS

6.1 Gravitational fields:

Newton's law of gravitation.
Gravitational field strength, g.

Representation of radial gravitational field lines.

Knowledge of experimental investigations is expected.

Qualitative treatment only. Temperature coefficient of resistance is not included.

Practical importance of internal resistance in a car battery and extra high-tension supply. Slide wire methods are not required.

Use of LDR or thermistor to control voltage. Simple circuit problems. The Wheatstone bridge is not required.

Energy $=I V t=I^{2} R t=V^{2} t / R$. Power $=I V=I^{2} R=$ V^{2} / R. The kilowatt-hour.

Knowledge of the internal structure of electrical meters and their conversion to different ranges are not required.

Variation of g with height above Earth's surface. Questions on gravitational potential will not be set.

Motion of satellites in circular orbits.

6.2 Electrostatic fields:

Simple electrostatic phenomena.

Inverse square law in electrostatics.
Use of lines of force to describe electric fields qualitatively.

Electric field strength defined as, $E=F / q$.
Work done when charge moves in a uniform electric field.

Acceleration of charged particles moving along the field lines of a uniform electric field.

Deflection of charged particles in uniform electric fields.

6.3 Capacitors:

Factors affecting the capacitance of a parallel plate capacitor.

Relative permittivity.

Exponential growth and decay of charge stored in a capacitor in series with a resistor. Time constant.

6.4 Magnetic fields:

Magnetic effect of a steady current.

Magnetic flux density. The Tesla.
Use of a simple form of current balance to measure flux density.

Force on a charged particle moving through a magnetic field.

Use of $m v^{2} / r=G M m / r^{2}$ and $T=2 \pi r / v$.

Charging conductors by induction. Point charges in vacuum.

Experimental demonstration is not required.

Definition of E only.
Use of $V=E d$.
$Q V=1 / 2 m v^{2}$. The electron-volt.

Qualitative description only.
$Q=C V ; \varepsilon_{r}=C / C_{o} ; C=\varepsilon_{o} \varepsilon_{r} A / d$. No experimental determination of the listed parameters is expected.

Exponential form of a graph to be understood and related to the decay of radioactivity. Use of graph to determine $R C$, as time taken for the charge and
voltage to drop to $1 / e$ (approximately 37%) of its initial value. Equations for growth and decay of charge are not required.
B-field patterns near a straight conductor and solenoid.
B defined from $F=B I l$. Vector nature of B.
Experimental use of $F=B I l$ to measure B.

Derivation of $F=B Q v$ from $F=B I l$ and $I=n A Q v$.
($B Q v=m v^{2} / r$)

6.5 Electromagnetic induction:

Magnetic flux. Flux linkage.

Faraday's and Lenz's laws of electromagnetic induction.

The simple generator.

Peak and root mean square values and their relationship for sinusoidal currents and voltages.

Use of the oscilloscope as a voltmeter and as a clock.

7. VIBRATIONS AND WAVES

7.1 Simple harmonic motion:

Definition of simple harmonic motion.

Displacement-time graph for a body in simple harmonic motion.

Energy in simple harmonic motion.

Natural and forced vibrations.
Mechanical resonance.

7.2 Mechanical waves:

Longitudinal and transverse progressive waves.

Amplitude, speed, wave length, frequency and phase interpreted graphically.

Experimental demonstration that cutting flux induces a potential difference across a conductor and that change in flux induces an electromotive force in a circuit.
$e=-N d \phi / d t$. Lenz's law and energy conservation. The derivation of $e=B l v$ is not required.

Qualitative study of electromotive force produced when a rectangular coil rotates in a uniform magnetic field as an introduction to sinusodial alternating current.

Knowledge of $I_{r m s}=I_{o} / \sqrt{ } 2$ and $V_{r m s}=V_{o} / \sqrt{ } 2$. Derivations of these equations are not expected.

Knowledge of the internal structure of the oscilloscope is not required.

Restoring force $=-$ constant multiplied by the displacement

Graph obtained from experiment.

Qualitative description of energy conversion in simple harmonic motion.

Including vibrating strings.

Emphasis on energy transmissions by waves.

Displacement-position and displacement-time graphs. Phase difference should be expressed as a fraction of a cycle, wavelength or periodic time. No reference to phase in radians is expected.

Treatment limited to transverse waves in a taut wire. Displacement-position graphs used to explain formation of nodes and antinodes.

Contrast between progressive and stationary waves.

Experimental treatment of diffraction of water waves at a single slit.

Interference of water waves in the two-slit experiment

7.4 Light waves:

Laws of reflection and refraction. Refractive index.

Total internal reflection and critical angle.
Dispersion.

Refraction of light by a thin converging lens.

Wavelike behaviour of light.

Energy levels of isolated atom.

The emission of light by atoms.

8. NUCLEAR PHYSICS

8.1 Evidence for a nuclear atom. Alpha scattering experiment.

Properties of alpha, beta (-) and gamma radiation and corresponding disintegration processes.

Health hazards and protection.

Radioactivity as a random process.
Radioactivity decay.
Concept of half-life.
Nuclear reactions.

Effect of slit and wavelength on pattern relative size.

Explanation of the formation of the interference pattern in terms of phase difference between the two wave trains. Effect on pattern of changes in point source separation and frequency.

Reflection and refraction at plane interfaces only.

Use of D-shaped block.
Dispersion of light by a prism. Continuous spectrum from white light source and line spectrum from a discharge tube.

Use of the lens equation and equation for magnification in any one sign convention. Experimental determination of the focal length by using these equations.

Looking at a slit source through two close, narrow slits to demonstrate the wavelike nature of light.

Students should know that the possible energy states of an atom are discrete.

Qualitative explanation of emission line spectra. Use of $E_{1}-E_{2}=h f$.

Emphasis on the results of the experiment and their qualitative interpretation.

Knowledge of qualitative experiments on absorption of radiation from sealed sources is expected.

Background radiation and its sources.
Use of $d N / d t=-\lambda N . N=N_{o} \mathrm{e}^{-\lambda t}$ is not required.
Use of $T_{1 / 2}=0.693 / \lambda$.

The atomic mass unit, u. Equivalence of mass and energy. Use of $E=m c^{2}$.

Suggested Textbooks

Carter, C., Physics: Facts and Practice for A-Level. Oxford University Press. ISBN 0-199-14768-X.
Farrell, M. P., Intermediate Physics 16-18. Progress Press. ISBN 99909-3-076-1
Mee, C., Arnold, B., Crundell, M. and Brown, W. AS/A2 Physics. Hodder and Stoughton.
ISBN 0-340-75779-5

Data Sheet

The following equations may be useful in answering some of the questions in the examination.

Uniformly accelerated motion:

$$
\begin{aligned}
& \text { Useful formulae: } \quad \begin{aligned}
v & =u+a t \\
s & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a s \\
s & =\left(\frac{u+v}{2}\right) t
\end{aligned}
\end{aligned}
$$

Materials:

Hooke's law:	$F=k \Delta x$	Momentum:	$p=m v$
Stress:	$\sigma=\frac{F}{A}$	Newton's second law:	$F=m a$
Strain:	$\varepsilon=\frac{\Delta l}{l}$	Kinetic energy:	$K E=1 / 2 m v^{2}$
Young's modulus:	$Y=\frac{\sigma}{\varepsilon}$	Gravitational potential energy:	$P E=m g h$
Energy stored in a stretched wire:	$E=1 / 2 k x^{2}$	Mechanical work done:	$W=F d$

Fields due to point sources:

$\begin{array}{ll}\text { Force between point charges: } & F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}} \\ \text { Force between point masses: } & F=G \frac{M_{1} M_{2}}{r^{2}}\end{array}$

Current electricity:

Current:

$$
I=n A v e
$$

Ohm's law: $\quad V=I R$
Resistors in series: $\quad R_{\text {TOTAL }}=R_{1}+R_{2}+\ldots$
Resistors in parallel: $\quad \frac{1}{R_{\text {TOTAL }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots$
Power:

$$
P=I V=I^{2} R=V^{2} / R
$$

Circular motion:

Centripetal acceleration: $\quad a=\frac{v^{2}}{r}$
Period:
$T=2 \pi r / v$

Mechanics:

Momentum: $\quad p=m v$
Newton's second law: $\quad F=m a$

Kinetic energy: $\quad K E=1 / 2 m v^{2}$
Gravitational potential energy: $\quad P E=m g h$
Mechanical work done: $\quad W=F d$

Vibrations and waves:

Acceleration in s.h.m.: $a=-k x$
Period: $\quad T=2 \pi / \sqrt{k}$
Velocity of a wave: $\quad v=f \lambda$

Electromagnetism:

Electric field strength: $\quad E=\frac{F}{q}$
Electric potential (uniform field): $\quad V=E d$
Energy of a particle accelerated by an electric field:

	$K E=q V$
Force on a moving charge:	$F=B Q v$
Force on current:	$F=B I l$
Electromagnetic induction:	$e=-d \phi / d t=B l v$

prce on a moving charge:

$$
\begin{aligned}
& K E=q V \\
& F=B Q v \\
& F=B I l \\
& e=-d \phi / d t=B l v
\end{aligned}
$$

Electromagnetic induction:

Capacitance:

Charge on capacitor: $\quad Q=C V$
Parallel-plate capacitor: $\quad C=\frac{\varepsilon A}{d}$

Light:

Thin lenses: $\quad \frac{1}{f}=\frac{1}{u}+\frac{1}{v}($ real is positive $)$

$$
\frac{1}{f}=\frac{1}{v}-\frac{1}{u}(\text { Cartesian })
$$

Magnification: $\quad m=\frac{v}{u}=\frac{h_{i}}{h_{o}}$ (real is positive)

$$
m=-\frac{v}{u}=-\frac{h_{i}}{h_{o}}(\text { Cartesian })
$$

Line spectra: $\quad \Delta E=h f=h c / \lambda$

$$
1 \lambda
$$

Alternating current:

Root mean square for sinusoidal alternating current and voltage:

$$
I_{r m s}=\frac{I_{0}}{\sqrt{2}} ; V_{r m s}=\frac{V_{0}}{\sqrt{2}}
$$

Nuclear physics:

Radioactivity:

$$
d N / d t=-\lambda N
$$

Mass-energy relation:
$E=m c^{2}$

