

AM Syllabus (2024): Computing

AM SYLLABUS (2024)

COMPUTING AM 07

SYLLABUS

AM Syllabus (2024): Computing

Page 2 of 38

Computing AM07 (Available in September)

Syllabus Paper 1(3 hrs) + Paper II(3 hrs) + Paper III(Practical tasks)

1. INTRODUCTION

This MATSEC Advanced-level Computing Syllabus has been prepared and compiled in

line with previous syllabi, latest computing and computing-related developments and

space for future syllabi to add and enhance the contents. In line with the objectives

clearly set in the previous version of this syllabus, the programming language that is to

be used throughout this syllabus is to be “Java”. This programming language will be

used in every aspect of this syllabus wherever the use of a programming language is

required.

It is also stressed that all theoretical treatment of topics should be adequately
accompanied by practical (real-world) examples whenever and wherever applicable.

Candidates are expected to gain the most benefit from this subject having completed
their SEC level Computing.

This syllabus is ideal for those candidates who wish to deepen their understanding of
various aspects of Computing possibly with an eye to pursuing studies at undergraduate
level.

This document is organised as follows: The next section (2) briefly outlines the contents
of the examination itself while Syllabus details are described in detail in Section 3.
Finally, detailed information about the coursework is expanded in Section 5.

2. EXAMINATION

The examination shall consist of three parts. All parts shall be set by the MATSEC Board,
namely, two written papers each of three hours duration and a set of practical exercises
subdivided into three sessions as described further down in this section. The overall
grade will be based on an overall aggregate score, as indicated by the percentages of
the various assessable components of this examination. Furthermore, candidates can
qualify for grades “A” to “C” if they obtain:

I. the overall minimum pass-mark as specified by the MATSEC Board;

II. a pass mark of 40% or more as stipulated in Paper III.

Paper I (100 marks) shall consist of twenty short compulsory questions in all. These
questions will require short and to the point answers each worth 5 marks. Paper I carries
40% of the final (total) examination score. This paper is expected to exercise all or most
of the fundamental concepts relating to the subject of Computing at Advanced level.

Paper II (100 marks) shall consist of eight long questions of which candidates are
expected to answer five. Each question carries 20 marks and candidates are expected to
understand precisely what is being asked and demonstrate understanding by answering
in some depth. Paper II carries 30% of the final (total) examination score.

Paper III (100 marks) is a set of practical programming tasks. The set of tasks will be
held over a period of two years. The first two tasks of duration 2 hours each will take
place in the first year and the third task of duration 3 hours will be held in the second
year of studies. The actual dates and times of these tasks are fixed by the MATSEC
Board. The first two tasks will each carry a value of 30 marks. The third task will have a
value of 40 marks. Paper III carries 30% of the final (total) examination score. The time
allocated to the various practical tasks must include the effort required to carry out the

AM Syllabus (2024): Computing

Page 3 of 38

tasks and adequate time for the candidates to think and reason about the proposed
solution(s). In case of re-sits, candidates will be allowed to re-sit all three tasks within
one year.

In the case of school candidates, the Practical Tasks component (a total of three tasks in
sequence) will be continuously, i.e. as a sequence of three tasks, assessed by the class
tutor. This component will be marked by the class tutor and should be kept under strict
confidential cover. In the case of private candidates, the MATSEC Board will be
responsible for the assessment of this practical tasks component.

Schools need to have the necessary equipment and software for the administration of

the tasks, namely, a computer network set-up with printing facilities accommodating a

separate station for each candidate. Each station should have appropriate BlueJ software

installed and also incorporate a means of writing the candidate’s work to a CD. Each

station should not be connected to the Internet. A lab technician should be present

during each test. Teachers should not be available during the test. An invigilator will be

sent to supervise the practical test session at every school.

Note regarding use of calculators: Calculators may NOT be used in any part of this

examination.

Note regarding this syllabus: The italic text in this syllabus is mainly intended as

guidance to paper-setters and examiners as to the actual scope, depth and detail that is

expected from the various topics, when and where applicable.

AM Syllabus (2024): Computing

Page 4 of 38

3. SYLLABUS

Module 1: Digital Logic

Objectives

Candidates should be able to:

• Understand the basics behind binary logic.

• Make use, understand and draw truth tables for logic expressions.

• Draw logic circuits from Boolean expressions.

• Apply fundamental Boolean algebra rules and/or Karnaugh maps to simplify simple

Boolean expressions.

• Understand the use of basic logic theorems to build practical and fundamental logic

circuitry.

• Implement a logic circuit using only NAND or NOR gates.

Subject

Content

Candidates should:

Binary

Understand that computers use binary to represent data and instructions.

Understand how computers represent and manipulate numbers as:

1. unsigned integers;

2. signed integers (sign & magnitude, Two's complement);

3. range of numbers using sign & magnitude, two's complement;

4. binary coded decimal (BCD).

Candidates cannot be asked to perform a representation with numbers

exceeding 8 bits.

Be able to perform binary arithmetic as:

1. addition and subtraction, excluding using sign and magnitude;

2. understand the concept of overflow and underflow.

Be able to convert between binary and denary whole numbers and vice

versa.

Understand why hexadecimal notation is used and be able to convert

between hexadecimal and binary and vice-versa.

Understand the difference between fixed-point and floating-point

representation using only 2's complement notation using:

1. signed fractional fixed-point representation;

2. signed floating-point representation;

3. the range of fixed-point and floating-point format representation;

4. normalisation of floating-point numbers.

Questions involving floating-point numbers should NOT exceed 8 bits for

the mantissa and 4 bits for the exponent.

Candidates can be asked to perform normalisation of floating-point positive

or negative numbers.

AM Syllabus (2024): Computing

Page 5 of 38

Understand the use of code to represent a character set (ASCII, EBCDIC

and UNICODE).

 Data

Storage

Understand and be able to convert between the terms bit, nibble, byte,

kilobyte (KB), megabyte (MB), gigabyte (GB) and terabyte (TB).

 Logic gates Understand and define the functions of NOT, AND, OR, NAND, NOR, XOR

and XNOR gates, including the binary output produced from all the

possible binary inputs (all gates, except the NOT gate, will have 2 or more

inputs)

Draw truth tables and recognise a logic gate from its truth table.

Recognise and use the following standard symbols used to represent logic

gates:

NOT AND OR

NAND NOR XOR

Use logic gates to create electronic circuits (combinational logic).

Produce truth tables for given logic circuits and convert a truth table to a

Boolean function.

Produce a logic circuit to solve a given problem or to implement a given

written logic statement, such as “IF (switch A is NOT on) OR (switch B is

on AND switch C is NOT on) then alarm, X, sounds”.

Determine the function performed by a combinational circuit through

analysis.

XNORXNOR

AM Syllabus (2024): Computing

Page 6 of 38

Boolean

algebra

Understand the basic theorems and properties of Boolean algebra.

The following list of laws will be assumed:

Be able to simplify Boolean algebraic expressions by applying Boolean

algebra theorems.

Candidates can be asked to prove the laws using truth tables.

AM Syllabus (2024): Computing

Page 7 of 38

Karnaugh

maps

Simplification of two, three or four variable Karnaugh maps.

Simplify Boolean algebraic expressions by applying Karnaugh maps.

Understand don't care values and use them to simplify Karnaugh maps

Candidates can be asked to simplify a Karnaugh map using either 1's or

0's.

The applications which should be considered when applying the above

theorems (both Boolean algebra and Karnaugh maps) should include all of,

and be limited to, the following:

1. Half and full adders;

2. Magnitude comparators;

3. BCD-to-Gray code converters;

4. 7-segment display units (excluding the decimal point).

Candidates can be asked to design a combinational logic circuit of a half

and/or full adder.

Candidates can be asked to design a magnitude comparator given that the

numbers being compared do not exceed two bits each.

Candidates should know how to convert from BCD to Gray code and be

able to design a circuit which performs such a function.

Candidates can be asked to design a circuit to turn on (a) segment(s) of a

seven-segment display, given the segments needed to form the range of

numbers that can be represented by the seven-segment display.

Universality

of logic

gates.

Understand that any logic expression can be implemented using only

NAND gates or only NOR gates and no other type of gate. NAND gates

alone in the proper combination, can be used to perform each of the basic

Boolean operations OR, AND, and NOT.

Candidates can be asked to design a circuit made up of only NAND or NOR

gates.

AM Syllabus (2024): Computing

Page 8 of 38

Module 2: Computer Architecture

Objectives

Candidates should be able to:

• Gain a good understanding of all the components making up the computer system.

• Understand the function of the different components making up the system.

• Have a clear understanding of how the different system components are connected

together and how they work to give the required output.

Subject
Content

Candidates should

Overview of

the

Organisation

of a Computer
System

List and describe the main PC components as listed throughout the rest

of this module.

It should be noted that:

1. The assumed computer architecture follows the Von Neumann

model;

2. Candidates should be able to explain the main PC components

within the Von Neumann model, including connections with Main

Memory and I/O Subsystems through the System Bus.

The System

Bus

Be able to explain the use and function of the System Bus as a means

of communication between components. The following aspects of Buses
should be considered:

1. Address Bus;

2. Data Bus;

3. Control Bus.

The following properties/attributes should be understood:

1. Bus size consideration;

2. System clock;

3. Interfacing devices to a common Bus using the method of
decoders;

4. Synchronous and Asynchronous data transfer.

Be able to give a description of memory read and write cycles.

Bus size considerations must involve the difference in Bus widths for
the Data Bus in comparison to the word length, and for the Address Bus
in comparison to the addressable space. Size considerations are not to
be specific, but general in terms of the comparisons noted above.
Questions should be set with a limit of 16 bits in mind and answers can
be submitted in index form.

AM Syllabus (2024): Computing

Page 9 of 38

Memory

Draw the organisation of typical RAM and ROM Memory chips, in terms

of:

1. Data input and output lines;

2. Address input lines;

3. Write enable line.

Describe and explain the characteristics and applications of RAM type

memory chips, in terms of:

1. Dynamic RAM;

2. Static RAM.

Describe and explain the characteristics and applications of ROM type

memory chips of the type:

1. ROM

2. EPROM

3. PROM

4. EEPROM

ONE application of each case is expected when comparing different

types of ROM.

Outline the function of Memory Address Map. Outline the connection

between the memory and the CPU through the use of address decoders

(the function of address decoders is to be explained and can be drawn

in any schematic form that conveys the functional meaning of the

decoder).

Applicants may be asked to draw a typical RAM/ROM chip outlining the

following components: Chip Select lines; Data Input Lines; Data Output

Lines; Control Lines (write/read enable lines); Address Lines.

The Memory Address Map is a general pictorial representation of how

RAM is segmented. The Memory Address Map outlines general

processes which are to load into memory, also showing static and

dynamic allocation of programs and the difference between these types.

Applicants should not be asked to quote specific address ranges for this

diagram.

CPU Draw the CPU model and provide an overview of its main components.

Read and understand the CPU’s instruction set and instruction format

pertaining to either RISC or CISC architectures as listed in Appendix A

of this document.

Provide a brief description of registers including MAR, MDR/MBR, CIR,

PC and General-Purpose Registers. Candidates may only be asked to

diagrammatically represent interactions between the above-listed

registers.

Explain the function of the Control Unit and the Arithmetic Logic Unit.

Basic knowledge of the function of both units is sufficient.

List the steps involved in the “fetch”, “decode” and “execute” cycles in

terms of Buses and Registers used.

Explain the use of a stack structure and its role in subroutine transfer.

AM Syllabus (2024): Computing

Page 10 of 38

The instruction set to be followed is that shown in Appendix A of this

syllabus. The General-Purpose Registers are limited to the four main

ones, i.e. AX, BX, CX and DX. Candidates may be asked to produce a

block diagram of processor architecture including the MAR, MDR/MBR,

CIR, PC and the Accumulator.

CPU Registers Explain the purpose and use of special internal registers in the

functioning of the CPU including:

1. Data registers;

2. Segment registers;

3. Index registers;

4. Stack registers;

5. Control registers;

6. Status/Flag register;

7. Cache (a description of the basic use of cache memory to

improve processor performance, including examples of cache

usage).

The discussion of Cache should be limited to Level 1 and Level 2.

Comparison of Cache to RAM and Registers should be carried out in

terms of access speeds and system performance.

I/O

Peripherals

Be able to describe the following aspects:

1. USB ports and Flash RAM;

2. Serial data transmission;

3. Synchronous transmission;

4. Asynchronous transmission.

AM Syllabus (2024): Computing

Page 11 of 38

Module 3: Assembly Languages

Objectives

Candidates should be able to:

• Understand the general format of assembly language instructions.

• Distinguish between the different types of instruction groups, instruction formats and the

various addressing modes.

• Understand basic assembly language programs, given an instruction set.

• List some assembler functions and tools.

Subject

Content

Candidates should:

Assembly

Language

Instructions

Understand what an instruction set is.

Understand the format of an instruction as being made up of opcode and

operand.

Understand the mnemonic representation of an opcode.

Understand the distinction between an instruction and a pseud-directive.

Instruction

Groups

Understand the instruction set given in Appendix A which is based on the

instruction set of the 8086 processor.

Instruction

Formats

Be able to interpret simple programs written in assembly.

Instruction sets together with relevant descriptions are always to be

provided as part of the question. Candidates should be able to interpret

fragments of code, but do not need to be able to write code.

Registers Understand the purpose of the general-purpose registers inside the

processor, including the AX (Accumulator), BX (Base), CX (Count) and DX

(Data) registers.

In relation to these 16-bit registers, reference should be made to both

their 8-bit high and 8-bit low order bytes, e.g. AH AL.

Addressing

Modes

Understand the following addressing modes:

1. Register addressing, e.g. INC AX (increment value of AX by 1);

2. Immediate addressing, e.g. MOV AX, #03H (move value 3 hex into

register AX);

3. Direct addressing (also known as memory addressing). This refers

directly to a memory address and allows the transfer of data

between this memory location and a register, e.g. MOV AX, 0810H

(move int the accumulator the contents of memory location

0810H);

4. Indirect addressing, e.g. MOV AX, [BX] (the contents of the BX

register is an address and is used to point to the memory location

where the data is to be found);

5. Indexed addressing, e.g. MOV CX, [BX + DI] (the value in the base

AM Syllabus (2024): Computing

Page 12 of 38

index register BX is combined with the number in the destination

index register Direct Index or Source Index to provide the address

of the number to be loaded into the CX register);

6. Understand the meaning of symbolic addressing.

For the sake of clarity, direct addressing should not use square

brackets, not to be confused with indirect addressing. Pseudo-

directives are not to be counted as instructions.

Assembler Understand the assembly process, including the assembling, linking,

loading and relocation processes.

Understand the purpose of the different types of assemblers, including:

cross assemblers, macro assemblers and meta assemblers.

AM Syllabus (2024): Computing

Page 13 of 38

Module 4: Operating Systems

Objectives

Candidates should be able to:

• Describe different operating systems and their function as well as outline their interaction.

• Develop a basic understanding of how operating systems manage memory and files.

• Understand how the operating system handles input and output operations.

Subject

Content

Candidates should:

Types of

Operating

Systems

Understand the specifics, function and differences of the following types of

Operating Systems:

1. Batch;

2. On-line;

3. Real-time;

4. Network.

By “On-line Operating Systems”, Operating Systems that would require a

working Internet connection to function are meant.

Understand Process Control Operations (definitions only).

Understand the application of Job Control Languages (JCL) and the use of JCL.
No coding knowledge is required.

Process

management

States of a

process

Understand the states in which a process may be, as follows:
1. Run;
2. Wait;
3. Suspend.

Scheduling Understand how processes can be scheduled, as follows:
1. Round Robin
2. Priority

Deadlock Understand what deadlock is, how it can occur and how to detect and avoid it.

Memory

Management

Understand the following memory usage and issues:
1. Application of Memory Maps of single and multi-programming

environments;
2. Contiguous memory partitioning;
3. Logical vs. physical address spaces;
4. Relocate-ability;
5. Memory fragmentation and compaction;
6. Pages and page frames;
7. Size considerations;
8. Faults Memory store protection (to prevent processes from accessing

storage allocated to other jobs).

File

management

Understand and use the following issues:
1. Management of files as stored physically;
2. Creating and accessing files;
3. Allocation of storage space.

Understand the meaning and structure of Blocks in terms of:

1. Contiguous;
2. Linked;
3. Indexed.

AM Syllabus (2024): Computing

Page 14 of 38

Understand the facilities for editing the contents of files.

Understand the protection of files and facilities against their unauthorised
access, in terms of:

1. User ID and password;
2. User Home Directory;
3. File access rights and allocated privileges;
4. File attributes;
5. Hardware failure.

Handling of I/O

operations

Understand I/O Addressing in terms of Memory mapped vs. Isolated/Separated
I/O.

Understand the concepts of Handshaking of Devices.

Understand devices that minimise complexity of I/O operations as follows:

1. Interrupt vs. polling;
2. Interrupt handler;
3. System stack;
4. Multiple interrupts and interrupt priorities.

Understand the Interrupt mask register.

Interrupt

Handling

Understand interrupts in terms of:

1. Providing an overview of interrupt handling;

2. Detecting source of interrupt;

3. Software polling vs. vectored interrupts.

Understand Direct Memory Access (DMA).

Terms to be examined relating to interrupts are Interrupt Service Request

(IRQ); Interrupt Service Routine (ISR); Interrupt Register; Interrupt

Enable/Disable Register; Software Polling; Vectored Interrupts – including the

Vector Table.

AM Syllabus (2024): Computing

Page 15 of 38

Module 5: Networking and Communications

Objectives

Candidates should be able to:
• Understand the basics of transmission methods in communication.

• Reason about the concepts behind the data transmission technology.

• Have a clear understanding of protocols, IP addressing properties and differentiate

between IPv4 and IPv6.

• Gain a general understanding of the OSI seven-layer protocol.

• Differentiate between LAN and WAN, including an in-depth understanding of the different

network topologies in use.

• Understand the implications of a network security breach.

• Gain adequate basic knowledge in the field of data and network hardware security

technologies.

Subject

Content

Candidates should:

Introduction to

Network

Be able to:

1. Define the term “computer network”;

2. Understand point to point data communications;

3. Distinguish between simplex, half duplex and full duplex data

communications.

Candidates must be able to define each type of data communication and

provide examples in each case.

Be able to differentiate between serial and parallel data communication and

know where each technology may be used.

Candidates must compare the basic difference(s) between serial and parallel

data communication and show where each data communication is more

suitable.

Introduction to

Network Data

transmission

technology

Be able to differentiate between analogue data communication and digital

communication (Diagrams being important to help explain differences), and

understand bit rates and data sampling.

Candidates should know what bit rate and data sampling is and how these two

factors affect the quality of data communication when modulating data.

Understand the use of modems in data communication and what analogue

wave modulation and demodulation is as well as the importance of modulation

when transmitting data.

Candidates are also expected to know the difference in wave properties of

modulation in terms of amplitude, frequency, phase and pulse.

Be able to define modulation and know the reason behind wave modulation

and how it can increase data speed transmission as well as the effects of baud

rate and bandwidth in the speed of data communication.

Candidates should know the difference between the measures of bit rate and

AM Syllabus (2024): Computing

Page 16 of 38

baud rate.

Understand the importance of data integrity during data communication and

the importance of multiplexing and de-multiplexing. Be able to differentiate

between time division and frequency division multiplexing (i.e. TDM and FDM).

Simple questions may be asked to provide diagrams of data transmission using

multiplexing. Apart from their definitions, candidates must also be able to

explain how to merge multiple data communication on a single line using

diagrams, as well as how to reverse the process. Candidates should know the

advantages and disadvantages of both TDM and FDM together and the

application of each.

Network Media

Be able to compare and contrast between the following network media types:

1. Coaxial;

2. Twisted pair (including shielded and unshielded);

3. Fibre optic;

4. Wireless (Satellite, Bluetooth and WIFI).

Candidates should know the characteristics of the above (e.g. max length,

speed, immune or not to Electro-Magnetic Interference) and the ideal situation

in which they should be used.

To define noise and Electro-Magnetic Interference (EMI).

The candidate should know which types of EMI exist and how one can reduce

their presence in data transmission.

Error Detection

and error

Correction

Be able to name factors which lead to errors in data transmission such as EMI

and Noise.

The candidate should define EMI and noise and how these can be mitigated.

Understand the use of Parity and Checksum checks as error detection and

correction measures designed to protect the integrity of data, during data

transfer.

A polynomial approach to the way CRC works is not required. There is no need

to know how to perform a binary division. The candidate should know when

and where best to apply each method of error detection.

AM Syllabus (2024): Computing

Page 17 of 38

IP addressing

and Websites

Understand the Internet Protocol address (IP address) in terms of:

1. What an IP address is;

2. Where IP addressing is used;

3. The need for Public IPs and private IPs;

4. IP security issues;

5. Length and format of both types of IP addresses;

6. The disadvantages of the IPv4 format;

7. The IPv6 packet format (the header part only);

8. The IPv6 addressable space.

Understand the difference between IPv4 and IPv6 protocols.

Candidates should know at least three IPv4/IPv6 format differences (e.g.

addressability, routing, security, etc.) and should understand the concept

behind creating IPv6 IP addresses.

Understand what a URL and what DNS is.

Candidates should understand the uses of the DNS and why DNS is useful (i.e.

the advantages of DNS as opposed to direct numeric addressing). Candidates

should also understand the process of how a URL is converted to an actual

web address.

IP addressing

and Websites

Protocols

Know what a protocol is and its importance in connecting to different types of

network. Tackled Internet protocols should include the following:

1. HTTP;

2. HTTPS;

3. FTP;

4. POP3;

5. SMTP;

6. IMAP.

Candidates are to define what a network protocol is and the importance of

network protocols and the area of application of the protocols. Comparing and

contrasting these protocols is important. Candidates should also know the

advantages and disadvantages of each protocol.

Understand the OSI seven-layer protocol and define its purpose.

Candidates should know the basic function of each layer and inversely, name

the layer required to perform a particular network communication function.

AM Syllabus (2024): Computing

Page 18 of 38

Network

Topologies

Understand the types of network:

1. Personal area network (PAN);

2. Local area network (LAN);

3. Metropolitan area network (MAN);

4. Wide area network (WAN).

Candidates should be able to compare each type of network and have a basic

idea of each. Candidates should be able to differentiate the usage between

PAN, LAN, MAN and WAN in terms of size and technology. There is no need to

know the details of technologies used in such networks.

Be able to compare and contrast the following network topologies:

1. Bus;

2. Star;

3. Ring;

4. Mesh;

5. Point-to-Point.

Candidates should know what each topology is and how it is structured and be

able to produce diagrams explaining, and list advantages and disadvantages

of, each topology.

Data

transmission

Be able to define what CSMA\CD is as well as what a Token Ring is.

Candidates should know why and where these two topologies are used.

Understand the differences between CSMA\CD and CSMA\CA.

Candidates must know how CSMA\CD works in terms of 1-persistent and non-

persistent protocols.

Be able to explain what Datagrams are. Explain simple Datagrams in switching

protocols. Understand different types of network switching protocols (i.e.

Packet-switching, message-switching, and circuit-switching).

Candidates should know the difference between each network switching

protocol and where each switching protocol is best used. Candidates should be

able to provide one example of each protocol.

Connectivity

devices

Know the purpose of connectivity devices in networks.

Be able to explain when and where the below-mentioned technologies are

used in a network. The main characteristics of these connection devices and

their application:

1. Routers;

2. Gateways;

3. Hubs;

4. Switches;

5. Bridge.

AM Syllabus (2024): Computing

Page 19 of 38

Security of

Information and

Infrastructure

Understand what Network Security is and the need to distinguish between

both logical (data, information and software) and physical (hardware) security.

The candidate should know at least two logical and two physical network

security measures.

Understand the importance of security during data communication.

Be able to define encryption and distinguish between Public and Private Keys.

Understand the use of digital signatures and digital certificates.

Candidates should only know definitions of keys and certificates and how these

can help security in data communication over a network. Candidates must

know the process of Signing, Validating and Encrypting a message when using

secure sites.

Data protection (confidentiality, integrity and availability) and software

resilience to hacking.

Apart from protection of data, candidates must also be aware that software

needs to be well-tested so that solutions are not hacked, or provide back

doors, etc.

Understand access rights (User Accounts, Groups and Permissions).

Understand Firewalls, their use and how they work.

Internal algorithmic and mathematical functioning details of firewalls are not

required.

Understand physical threats (natural, intentional and unintentional) and

countermeasures adopted (Biometrics, Fire Alarms, etc.) to protect network

system hardware.

Candidates should know the most common physical threats to computing

resources (both hardware and software) as well as measures adopted in

response to these threats.

AM Syllabus (2024): Computing

Page 20 of 38

Module 6: Language Translators

Objectives

Candidates should be able to:

• Understand the structure of a formal language.

• Define the syntax of a formal language using relevant tools.

• Appreciate the need to define the semantics of a formal language and describe the stages

of its compilation.

• Differentiate between various types of language translators.

Subject

Content

Candidates should:

Formal

languages and

syntax definition

Understand:

1. The differences between natural and formal languages;

2. The syntax and semantics of a language;

3. The meaning of terminal and non-terminal symbols;

Know what goes into the production of specific programming languages.

Define syntax using BNF and Syntax Diagrams using circles to denote

terminal symbols and rectangles to denote non-terminal symbols.

Understand the meaning and use of meta-symbols and variables as

follows:
::= defined as;
< > non-terminal symbol;
 | selection.

The syntax of a

formal language

Be able to:

1. Use BNF to unambiguously express the syntax of a language;

2. Be able to use parse trees (bottom up / top down) and canonical

parsing to check that a statement is syntactically correct according

to a set of rules or productions;

3. Be able to use Reverse Polish Notation (RPN) to define arithmetical

statements;

4. Use of binary trees and stacks to obtain and evaluate a post-fix

(RPN) statement.

Assessing of Language Translators sub-topics should be done in

consideration of the overall process of program translation. Questions

therefore should not focus on sub-topics in isolation from the larger

picture. Usage of a stack structure is a must for notation conversion from

post-fix to in-fix, while tree structures are a must for notation conversion

from in-fix to post-fix.

Example: A candidate is asked to perform a tree traversal (post-fix to RPN)

after asking the reason behind post-order traversal.

AM Syllabus (2024): Computing

Page 21 of 38

The semantics

of a formal

language

Understand the need for semantics (meaning) other than syntax (form).

The compilation

process

Understand the stages of compilation, as follows.

Lexical analysis:

1. removal of redundant text;

2. simple error handling;

3. conversion of lexemes to tokens.

Syntax and semantic analysis:

1. parsing;

2. symbol table;

3. compile-time error detection and handling.

Code optimisation and generation:

1. simple techniques to optimise code;

2. translation into object code and linking.

Questions on stages of compilation should not only include theory but
should also include examples. Therefore, it is not enough to have the
candidate explain the stage of code optimisation and generation but should
be supplemented with an example of code where the candidates actually
show how simple code optimisation is done.

Language

translators

Understand the differences between assemblers, compilers and

interpreters.

Know other types of compilers: macro pre-processors, cross-compilers, p-

code compilers.

Understand virtual machine concepts and just-in-time compilation.

AM Syllabus (2024): Computing

Page 22 of 38

Module 7: Systems Analysis and Design

Objectives

Candidates should be able to:

• Understand the main principles of systems analysis and design.

• Develop a practical knowledge of the main stages of the systems development life cycle

(SDLC), following the Waterfall methodology, including: identification of problem, fe-

asibility study, information processing requirements, analysis, design, implementation,

testing and maintenance.

• Analyse a given scenario and apply the SDLC stages resulting in the definition of

outcomes from each stage in the form of a milestone report.

Subject

Content

Candidates should:

Overview of the

System

Understand the main stages of a system life cycle:

1. Problem Definition;

2. Feasibility Study;

3. Requirements Elicitation;

4. Analysis;

5. Design;

6. Implementation;

7. Testing;

8. Maintenance;

9. Retirement.

Lifecycle Understand the Generic Waterfall model.

Identification of

the problem

Understand what prompts an organisation to develop a new system:

1. Current system may no longer be suitable for its purpose;

2. Technological developments;

3. Current system may be too inflexible or expensive to maintain;

4. New system required to gain a competitive advantage.

Feasibility study Be able to prepare a study containing the scope and objectives of the

proposed system. This study would determine whether it is worth

proceeding from a number of aspects, as follows:

1. Technical;

2. Operational;

3. Timeliness;

4. Economic;

5. Legal;

6. Social.

Candidates should be able to describe and reason in the above terms

whether or not the project is feasible to develop.

Requirements

Elicitation

Understand the problem completely both in breadth and in depth in terms

of:

1. Interviews;

2. Questionnaires;

3. Inspection of documents;

4. Observation (of existing system and work processes);

5. Consideration of the use of “off-the-shelf” solutions and purpose-

AM Syllabus (2024): Computing

Page 23 of 38

built development.

Formulation and evaluation of alternative solutions following the

establishment of system requirements.

Candidates should be able to list ONE advantage and ONE disadvantage

whilst evaluating each of the above-listed methods.

System Analysis Understand and carry out system modelling in terms of:

1. Process modelling;

2. Data Flow based modelling (Data Flow Diagrams - DFDs);

3. Use-Case-based modelling (Use-Case Diagrams - UCDs);

4. Class Diagrams;

5. Data processing;

6. Entity Relationship Diagrams (ERDs).

With the exception of Unified Modelling Language (UML) diagrams,

questions relating to the construction of models using the above-listed

diagrammatic notations should be restricted to completion of existing

models and not include construction from scratch. Questions relating to all

the above should not exceed diagram configurations of five (5) nodes.

Data Flow Diagrams should not exceed the detail of a Level 1 diagram.

Understand and use UML diagrams in terms of:

1. How can UML help the system analyst model various parts of a

software solution?

2. What is a Use-Case Diagram (UCD)?

3. How can a UCD help in determining system requirements?

4. What are Class Diagrams and what is their basic use?

Understand the advantages of using UML diagrams.

Candidates should be able to create a UML and/or DFD diagram for a given

scenario (max five (5) classes and/or equivalent processes) and

understand and explain a given UML diagram and/or DFD.

The use of the De Marco notation is expected. Please refer to Appendix C

for the specific De Marco notation.

Entity Relationship Models (only basic use)

The use of the “Crow’s Foot” notation is expected. Please refer to Appendix

D for the specific “Crow’s Foot” notation.

System Design Understand top-down and bottom up approaches to system design.

Understand specific design aspects in terms of:

1. Design of user interface;

2. Menu design;

3. Specification of data employed (data inputs);

4. Organisation of data output;

5. Specification of hardware and software selection;

6. Conversion plan;

7. Testing strategy, test plan, and test data (i.e. test cases design).

Understand the use of the following algorithm representation forms:

AM Syllabus (2024): Computing

Page 24 of 38

1. Hierarchical Input Output Processing (HIPO) chart;

2. Jackson Structured Programming (JSP) method;

3. Decision tables;

4. Flowcharts;

5. Structured text and pseudo-code.

Be aware and understand modular design and modular interface concepts.

Candidates should be able to list THREE advantages of using a modular

design.

Understand the uses of prototyping.

Know what goes into preparing software solution documentation.

Coding and

Testing

Understand:

1. The coding of modules and the documentation of any deviations

from the original design.

2. Module development and testing according to set Testing strategy.

3. The preparation of a User Manual.

Understand the types of testing strategies as follows:

1. Bottom up;

2. Top down.;

3. Black box and White Box;

4. Alpha and Beta testing.

Candidates should be able to explain each of the testing techniques and

identify and explain which would be appropriate in a given scenario.

Implementation Understand the tasks that need to be faced before the changeover is

complete, i.e. installing any applicable hardware, training system users

and the creation of master files.

Know changeover techniques (basic idea behind and comparison of):

1. Direct;

2. Parallel;

3. Phased Pilot.

Maintenance Be aware of the basic fundamental issues of best practices adopted in

system analysis, modularity, and documentation generation.

Understand the types of maintenance (basic concepts behind and

examples) as follows:

1. Adaptive;

2. Corrective;

3. Perfective;

4. Predictive.

In order to exam the candidates’ knowledge on this module, it is advised

that a business case/scenario is given listing the requirements for a

new/improved update to a system. Candidates are then to create a report-

like review listing the stages following the Waterfall methodology (or those

parts of the methodology depending on the total marks allocated for this

question as specified within the question itself) whilst keeping in mind the

AM Syllabus (2024): Computing

Page 25 of 38

requirements listed. Any assumption(s) made by candidates need(s) to be

stated.

Short theoretical questions may also be listed, however it is advised that

such questions be related to the given scenario.

AM Syllabus (2024): Computing

Page 26 of 38

Module 8: Introduction to Data Structures and High-Level Language Programming

Objectives

Candidates should be able to:

• Identify and describe different programming paradigms including imperative, declarative,

functional and object-oriented.

• Have a good understanding of the fundamental concepts of object-oriented programming,

including objects and classes, data encapsulation, inheritance and polymorphism.

• Gain a good knowledge of the notions of class, object, attribute and operation.

• Have a good knowledge of the different data types available.

• Identify and have a sound understanding of the relevant programming constructs

targeted at problem solving.

• Select and appropriately apply standard algorithms for sorting and searching (to be

implemented using pseudo-code or structured text).

• Know how to make use of files as a permanent type of storage mechanism.

Subject

Content

Candidates should:

Data Structures Understand the purpose and applications of the following data

structures:

1. Arrays;

2. Lists (in the form of Stacks, Queues, Linked-lists and Array or

Linear lists);

3. Binary Trees.

More details regarding these structures are found further down in this

module.

 Arrays Understand what an array is and its purpose.

Be able to write algorithms:

1. to create an array;

2. to fill an array with primitive and string type only;

3. to display data from an array.

Pointers Understand what a pointer is, and what it is used for in conjunction with

different data structures.

Candidates are only expected to describe what the use of a pointer is.

Stack Understand what a Stack is in terms of a LIFO structure.

Be able to perform operations on Stack structures, limited to “Pushing”

and “Poping” items on a Stack.

Be able to write algorithms using pseudo-code for the “Push” and “Pop”

operations.

Explain the use of a stack in computing.

Queue Understand what a Queue is in terms of a FIFO structure.

Distinguish between a Linear Queue and a Circular Queue.

AM Syllabus (2024): Computing

Page 27 of 38

Be able to write algorithms in pseudo-code to add and remove an item

from both types of Queues.

Explain the use of a Queue in computing.

Lists Understand the difference between a linear (or array lists), linked list,

circular linked list and double-linked list.

Be able to describe how to add and delete a node from the above-

mentioned lists.

Candidates may be asked to implement the operations on Linear lists

using either pseud-code or Java code, but not for linked lists, circular

linked lists and double-linked lists.

Binary Trees Be able to construct a binary tree.

Be able to add and delete a node from the binary tree.

Be able to traverse a binary tree using the following three traversal

methods:

1. Pre-order traversal;

2. In-order traversal;

3. Post-order traversal.

Be able to use a binary tree and an associated traversal method to sort

data

Candidates should NOT be asked to use either pseudo-code or Java code

to implement the operations on a binary tree.

Static vs

Dynamic data

structures.

Be able to explain the difference between static and dynamic

implementation of data structures, highlighting the advantages and

disadvantages of each. Explain how an array may be used to implement

a Queue and a Stack structure

 Hash table Understand what a hash table is.

Be able to create and update a hash table using a hashing algorithm.

Candidates can only be asked to use the modulus method to create a

hash address.

Understand the concept of collisions and how they can be resolved.

Be able to list the characteristics of a good hashing function.

Searching

algorithms

Explain the difference between a binary search and a sequential search,

highlighting the advantages and disadvantages of each

Be able to write an algorithm to search for an item in a sequential list.

Be able to show understanding of the conditions necessary for the use of

a binary search.

Be able to write a binary search algorithm to search for an item in an

ordered list. Understand how the performance of a binary search varies

according to the number of data items.

AM Syllabus (2024): Computing

Page 28 of 38

Sorting

algorithms

Be able to write algorithms to implement the bubble, insertion and

selection sort.

Be able to dry-run an algorithm for the Quick and Merge sort.

High Level

Languages

Understand programming paradigms in terms of:

1. Characteristics of each programming paradigm including:

imperative, declarative, functional, object-oriented and event-

driven programming;

2. Domain relevance of the above-mentioned programming

paradigms.

Be able to compare between Object-oriented and Imperative

Programming in terms of:

1. The need for a programming paradigm which models the real

world in terms of software reusability;

2. The limitations of imperative programming: variable assignment

rather than object manipulation;

3. The object-oriented solution: the use of classes and objects in

problem-solving.

Understand Object-Oriented Programming Characteristics in terms of:

1. Encapsulation (through classes and objects including attributes

and operations);

2. Message passing (i.e. operation invocation);

3. Inheritance;

4. Information hiding;

5. Polymorphism.

Expressions and

data types

Understand the following:

1. Simple java programs that utilise the keywords print and

println;

2. Java style comments;

3. Primitive data types: char, int, double, and Boolean;

4. Operator precedence;

5. Relational operators <, <=, >, >=, ==,!=

6. String literals;

7. Expressions composed of primitive data types;

8. Expressions that mix data types.

Variables and

assignments

Understand the following:

1. The concept of a variable as a named memory location;

2. Variable declarations and initialisations;

3. Assignment and Java’s assignment operators: =, +=, -=, *=, /=,

%=

4. The use of a Scanner object for interactive input;

5. The advantages of using final variables;

6. Type compatibility and casting;

7. Pre-increment and post increment (++ x, x++, --x, x--);

8. Shortcuts (x = x + 10 can be shortcut to x += 10).

Selection and

decision

Understand the following:

1. Selection as a mechanism for controlling the flow of a program;

2. The if statement, the if-else statement;

3. Switch statement and Nested if-else statements.

AM Syllabus (2024): Computing

Page 29 of 38

Repetition/

Iteration

Understand the following:

1. Repetition and loops: the while, do-while, and for statements;

2. The differences and similarities among the while, do-while and

for statements;

3. Nested loops;

4. Infinite loops.

Methods

Understand the following:

1. The concept of a method as a “black box”;

2. The methods of Java’s Math class*;

3. How to construct methods that carry out simple tasks;

4. The differences between void methods (setters) and methods that

return a value (getters);

5. Local variables;

6. Method overloading.

*Only the following methods are to be used: Math.random(),

Math.round(x), Math,max(x,y), Math.min(x,y), Math.pow(x,y), sqrt(x).

Objects and

classes

Understand the following:

1. Objects and classes;

2. Some typical methods in the String class:

 charAt, compareTo, concat, equals, indexOf, length;

3. Programmer defined classes;

4. Components of a class: constructors, instance variables and

methods;

5. Overloading of constructors;

6. Access modifiers: public, private and protected;

7. Encapsulation and information hiding;

8. Static variables and static methods;

9. Parameter passing (passing by value or by reference);

10. The keyword this

Arrays

Understand the following:

1. The static nature of an array;

2. Array declarations, instantiation, initialisation, filling in an array

with data, displaying data from an array;

3. Reference variables;

4. How arrays are passed to methods and used in methods;

5. Sorting an array ONLY using the bubble sort algorithm;

6. Searching an array using a linear and a binary search;

7. Two dimensional arrays (populating with primitive data types and

displaying);

8. Arrays of objects.

ArrayList

ArrayList (the dynamic nature of Arraylists, their usage).

ArrayList methods:

add, remove, clear, get, set, size, indexOf, isEmpty, lastIndexOf,

removeAll.

Recursion

Understand the following:

1. Recursion as a method of program control;

2. Problem solving via recursive thinking;

3. Tracing and debugging recursive method.

AM Syllabus (2024): Computing

Page 30 of 38

Candidates will not be expected to write recursive code in paper 3,

however theoretical understanding and/or a dry run may be requested in

the other papers.

Inheritance

Understand the following:

1. Inheritance and its benefits;

2. The is-a relationship between a derived class and a base class;

3. Abstract classes and methods and inheriting from these;

4. Method overriding.

Polymorphism

Understand the two types of polymorphism (method overloading and

upcasting).

Candidates are expected to know how to implement a simple

polymorphism exercise using an array of a superclass.

Exceptions

Understand the usage of the try…catch construct in data input validation.

Candidates should not be asked to write throwable exceptions.

Files and File

Access

Understanding Text files and Object Files in terms of:

1. Creating a file;

2. Writing to a file;

3. Reading from a file.

AM Syllabus (2024): Computing

Page 31 of 38

Module 9: Databases

Objectives

Candidates should be able to:

• Understand the basic structure, function and importance of database management

systems (DBMSs)

• Be able to compare different database models.

• Appreciate the importance of relational databases over traditional file systems.

• Understand the logical structure and design of a relational database.

• Describe data models diagrammatically using Entity-Relationship (E-R) diagrams.

• Normalise a relational database up to the Third Normal Form.

• Apply methods and tools for database design by using currently available database

packages.

• Understand the purpose of a query language and be able to interpret simple SQL

commands.

Subject

Content

Candidates should:

Database

Management

Systems

Understand the structure and function of database management systems

(DBMSs) as follows:

1. Data dictionary;

2. File manager;

3. Data manipulation language (DML);

4. Data description language (DDL);

5. Query language;

6. Security;

Understand the responsibilities of a database administrator.

Candidates should be able to describe the three levels of the database

schema.

Database Models Be able to compare flat files, hierarchical, network and relational

database models, and object-oriented database models.

Relational

Databases vs.

Traditional File

Systems

Understand:

1. The advantages of databases over traditional file systems

including: improved data consistency and portability, control over

data redundancy, and greater security.

2. The disadvantages of databases over traditional file systems

including: greater complexity and cost, vulnerability to system

failure and unauthorised access, and larger size.

Relational

Databases

Understand the nature and logical structure of a relational database as a

set of tables linked together using common fields.

Understand the purpose of primary, secondary and foreign keys,

attributes (field), and tuples (record).

Be able to use a short notation to represent a relational table in which

the name of the table written in capitals is followed by a list of all the

attributes in brackets, with the primary key underlined, e.g. CANDIDATE

(stud_id, name, surname, DoB, address)

AM Syllabus (2024): Computing

Page 32 of 38

Entity-

Relationship

Modelling

Understand the use of Entity-Relationship (E-R) Models to give a

graphical description of the relationship between entities, including

cardinality.

The standard “Crow’s Foot” notation is to be used to model and describe

the

above concepts.

Understand the importance of normalisation to avoid unnecessary

redundancy.

Be able to normalise a simple relational database up to the Third Normal

Form.

The purpose and use of commercial and top-end database packages, and

web-based database solutions.

Candidates should only be aware of fourth generation applications used

to develop a database, such as Microsoft AccessTM.

Normalisation

Database

Applications

Be able to use E-R Models to give a graphical description of the

relationship between entities, including cardinality.

Be able to develop a simple relational database using fourth generation

applications such as Microsoft AccessTM or DelphiTM.

Structured Query

Language (SQL)

Understand the purpose and use of ONLY the following SQL commands to

manipulate data: SELECT, FROM, WHERE, ORDER BY, HAVING, GROUP

BY, JOIN

Candidates will NOT be expected to write segments of SQL, only

interpretation

of SQL instructions will be examined.

AM Syllabus (2024): Computing

Page 33 of 38

APPENDIX A (TO MODULE 2): ASSEMBLY LANGUAGES

Limited instruction set to be used

Data Transfer

instructions

Logical Instructions

Arithmetic Instruction

Transfer Instructions

Flag Manipulation

Shift and Rotate

Pseudo-

directives

HALT, END

 MOV Moves byte or word to register or memory

PUSH Push a word on stack

POP Pop a word from stack

NOT Logical not (1’s complement)

AND Logical and

OR Logical or

XOR Logical exclusive-or

ADD , ADC Add and Add with carry

SUB, SBB Subtract and Subtract with borrow

INC Increment

DEC Decrement

CMP Compare

JMP Unconditional Jump

JE Jump on Equal

JNE Jump on Not Equal

JL Jump if Less

JLE Jump if less or equal

JG Jump if Greater

JGE Jump if Greater or Equal

JC, JNC Jump on carry or Jump on No Carry

CALL Call Subroutine

RET Return from subroutine

CLC Clear Carry
STC Set Carry
SHL, SHR Logical Shift Left or Right
RCL, RCR Rotate through Carry Left or Right

AM Syllabus (2024): Computing

Page 34 of 38

APPENDIX B: LIST OF ACRONYMS

ADSL -Asymmetric Digital Subscriber Line

ASCII -American Standard Code for Information Interchange

ATM -Asynchronous Transfer Mode

BNF -Backus Naur Form

CISC -Complex Instruction Set Computer

CSMA/CD -Carrier Sense Multiple Access / Collision Detect

DMA -Direct Memory Access

DTP -Desktop Publishing

EBNF -Extended Backus Naur Form

ROM -Read Only Memory

EEPROM -Electrically Erasable Programmable ROM

EPROM -Erasable Programmable ROM

FDDI -Fiber Distributed Data Interface

FTP -File Transfer Protocol

HDSL -High bit-rate Digital Subscriber Line

IMAP -Internet Message Access Protocol

ISDN -Integrated Services Digital Network

LAN -Local Area Network

LIFO -List In First Out

MAN -Metropolitan Area Network

OSI -Open Systems Interconnection

POP -Post Office Protocol

PROM -Programmable ROM

RISC -Reduced Instruction Set Computers

SMTP -Simple Mail Transfer Protocol

USB -Universal Serial Bus

WAN -Wide Area Network

AM Syllabus (2024): Computing

Page 35 of 38

APPENDIX C: De Marco DFD Notation

 Data Process:

P

N

“N” is the process

number “P” is the process

name

D

Data Flow:

“D” is the flow label

External Entity:

E

“E” is the entity’s

name

Data Store:

S

“S” is the Store’s

name

AM Syllabus (2024): Computing

Page 36 of 38

APPENDIX D: Crow’s Foot E-R Diagram Notation

1 – 1

1 – M

M – N

Data Entity

 “E” is entity’s name

 E

AM Syllabus (2024): Computing

Page 37 of 38

4. FURTHER INFORMATION REGARDING THE PRACTICAL TASKS

IMPORTANT NOTE: Only the “BlueJ” programming environment will be used
throughout in the practical tasks.

5.1 Rationale
• Problem solving;
• Programming skills;
• Object-oriented concepts;
• Solution extraction and selection;
• Assimilation of algorithmic constructs;
• Expression of problems/tasks using stipulated syntax;
• Applicative skills.

5.2 Practical Tasks component content

All listed below topics are subject to syllabus scope. (Please refer to module 8)

Paper IIIa (year 1, session 1)

1. Identify, understand and use the:

a. basic programming constructs

i. variables (Class instantiation is not included)

ii. data types

iii. sequence statements

iv. conditional statements

v. repetition statements

Questions in this task are expected to be three disjoint from each other questions of 10

marks each.

2. Paper IIIb (year 1, session 2)

a. Methods

b. Method overloading

c. Access modifiers

d. Arrays of Primitive data type

e. Linear search

f. Bubble sort

Questions in this task are expected be three in all. The first two questions will be linked

to each other in form of question two using the results from question 1, and one third

question will be disjoint from the first two. Each question will carry 10 marks.

3. Paper IIIc (year 2, session 3)

a. Arraylists

b. Arrays of objects

c. Inheritance / Abstraction

d. Method overriding

e. Polymorphism

f. Handling exceptions (input mismatch exception and array index out of bounds)

This task is expected to be made up of one question composed of various parts. All parts

will be linked and each part will be marked separately. The task as a whole will carry 40

marks.

AM Syllabus (2024): Computing

Page 38 of 38

5.3 Note on private candidates regarding registration for Practical Tasks

Private candidates are to contact MATSEC, who will subsequently allocate each candidate
to a specific centre. Registrations will be accepted up till the end of November of their
first year of studies. The same assessment conditions and times apply to both school and
private candidates.

